Question
Hello tutor, using the instructions/data set below could you assist me in answering question 9-16. Instruction: The variable Job indicates whether a student has a
Hello tutor, using the instructions/data set below could you assist me in answering question 9-16.
Instruction: The variable "Job" indicates whether a student has a job or not. "Y" means the student has a job where they are required to work more than 5 hours per week, and "N" means the student does not have this type of job. A researcher wants to see if the population proportion of students with jobs at Purdue is different from 0.59. Use = 0.05.
Question 9. Define the parameter using context
Question 10. State the hypotheses for this test, using the correct parameter, signs, and hypothesized value
Question 11. Compute , the point estimate for the population proportion
- To estimate the proportion of students with jobs, divide the number of observed "Y"s by the sample size.
- Find the name and value of the point estimate, rounded to 4 decimals.
Question 12. . Is the Normality condition in place for your data?
- Find the correct values to confirm that this condition is valid: 0 5 and (1 0) 5
Question 13. Compute the test statistic.
- Round and standard error to 3 decimals
- State the name of the test statistic, type the work and state the computed value, rounded to 2 decimals.
Question 14. Find the p-value using a table: Type the probability statement for the p-value for the computed test statistic and the approximate probability found using the appropriate table.
Question 15. Find the critical value(s) for the rejection region for this test.
Question 16. After comparing the p-value to , or the test statistic to the critical value, type the conclusion.
Subject | Visual | Auditory | Differences | Job | ||||||
1 | 9.432 | 8.436 | Y | Hypothesis Test 1 | Hypothesis Test 2 | |||||
2 | 8.369 | 6.291 | Y | sample size, n | number of "Y"s | |||||
3 | 7.484 | 6.846 | N | point estimate, d-bar | point estimate, p-hat | |||||
4 | 8.455 | 7.795 | Y | standard deviation, s(d) | ||||||
5 | 9.563 | 9.396 | Y | |||||||
6 | 9.691 | 7.688 | N | standard error, s(d-bar) | standard error,s(p-hat) | |||||
7 | 14.481 | 12.13 | N | |||||||
8 | 6.7 | 11.335 | N | test statistic | test statistic | |||||
9 | 5.971 | 4.69 | Y | |||||||
10 | 8.276 | 9.111 | Y | |||||||
11 | 3.548 | 3.82 | Y | |||||||
12 | 7.402 | 8.238 | Y | |||||||
13 | 9.66 | 8.13 | Y | |||||||
14 | 7.698 | 8.144 | Y | |||||||
15 | 7.231 | 5.682 | Y | |||||||
16 | 5.904 | 8.034 | N | |||||||
17 | 8.769 | 6.989 | N | |||||||
18 | 5.02 | 8.91 | Y | |||||||
19 | 7.857 | 9.623 | N | |||||||
20 | 12.151 | 9.242 | Y | |||||||
21 | 10.006 | 8.616 | Y | |||||||
22 | 6.133 | 7.99 | N | |||||||
23 | 6.783 | 8.205 | Y | |||||||
24 | 5.496 | 8.232 | N | |||||||
25 | 5.651 | 9.047 | Y | |||||||
26 | 5.336 | 7.723 | Y | |||||||
27 | 12.041 | 9.802 | Y | |||||||
28 | 10.477 | 7.894 | Y | |||||||
29 | 10.673 | 7.538 | Y | |||||||
30 | 6.632 | 7.213 | Y | |||||||
31 | 8.341 | 8.141 | Y | |||||||
32 | 13.563 | 9.91 | N | |||||||
33 | 10.77 | 7.629 | N | |||||||
34 | 4.275 | 6.184 | Y | |||||||
35 | 13.542 | 11.4 | Y | |||||||
36 | 5.579 | 8.677 | Y | |||||||
37 | 8.625 | 8.302 | Y | |||||||
38 | 9.707 | 10.218 | Y | |||||||
39 | 10.881 | 7.638 | N | |||||||
40 | 10.716 | 6.772 | Y | |||||||
41 | 10.063 | 7.035 | Y | |||||||
42 | 7.288 | 4.515 | N | |||||||
43 | 12.473 | 7.826 | Y | |||||||
44 | 9.728 | 8.859 | N | |||||||
45 | 7.53 | 10.824 | Y | |||||||
46 | 11.209 | 10.585 | Y | |||||||
47 | 3.802 | 7.004 | N | |||||||
48 | 11.68 | 9.936 | Y | |||||||
49 | 8.193 | 9.182 | Y | |||||||
50 | 10.603 | 8.099 | Y | |||||||
51 | 10.692 | 9.078 | N | |||||||
52 | 8.158 | 9.046 | N | |||||||
53 | 7.683 | 6.357 | N | |||||||
54 | 9.738 | 10.944 | Y | |||||||
55 | 8.688 | 7.476 | N | |||||||
56 | 12.766 | 8.961 | Y | |||||||
57 | 5.874 | 9.105 | Y | |||||||
58 | 6.129 | 8.754 | Y | |||||||
59 | 11.699 | 9.144 | N | |||||||
60 | 13.598 | 11.03 | N | |||||||
61 | 10.781 | 8.804 | Y | |||||||
62 | 8.709 | 5.535 | N | |||||||
63 | 14.411 | 10.592 | Y | |||||||
64 | 9.484 | 7.051 | Y | |||||||
65 | 7.452 | 8.75 | Y | |||||||
66 | 9.673 | 10.078 | N | |||||||
67 | 4.267 | 7.578 | Y | |||||||
68 | 8.271 | 6.638 | N | |||||||
69 | 12.287 | 10.611 | Y | |||||||
70 | 7.456 | 7.744 | Y | |||||||
71 | 1.938 | 9.048 | Y | |||||||
72 | 11.621 | 10.118 | Y | |||||||
73 | 10.095 | 7.099 | Y | |||||||
74 | 6.182 | 3.668 | Y | |||||||
75 | 12.076 | 9.476 | N | |||||||
76 | 10.927 | 9.462 | Y | |||||||
77 | 9.672 | 9.718 | Y | |||||||
78 | 10.039 | 6.728 | Y | |||||||
79 | 11.974 | 9.573 | Y | |||||||
80 | 10.206 | 8.41 | Y |