Question
I entered a perpendicular frame using the following mathmatica code: {perpframe[1], perpframe[2], perpframe[3]} = {{Cos[r] Cos[t] - Cos[s] Sin[r] Sin[t], Cos[s] Cos[t] Sin[r] + Cos[r]
I entered a perpendicular frame using the following mathmatica code:
{perpframe[1], perpframe[2], perpframe[3]} = {{Cos[r] Cos[t] - Cos[s] Sin[r] Sin[t], Cos[s] Cos[t] Sin[r] + Cos[r] Sin[t], Sin[r] Sin[s]}, {(-Cos[t]) Sin[r] - Cos[r] Cos[s] Sin[t], Cos[r] Cos[s] Cos[t] - Sin[r] Sin[t], Cos[r] Sin[s]}, {Sin[s] Sin[t], (-Cos[t]) Sin[s], Cos[s]}}
Next I entered a cleared 3D point {x,y,z} and calculated
({x,y,z} . perpframe[1]) perpframe[1] +
({x,y,z} . perpframe[2]) perpframe[2]
+ ({x,y,z} . perpframe[3]) perpframe[3]
Last, I applied trig identities and the output was {x,y,z}
Questions:
What is the relationship between the location of {x,y,z} and the location of
({x,y,z}.perpframe[1]) perpframe[1] and also the relationship between the location of {x,y,z} and the location of
({x,y,z}.perpframe[1]) perpframe[1] + ({x,y,z}.perpframe[2]) perpframe[2]?
Is it just that it places it on the perpendicular plane?
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started