I have calculated everything but the probability. I am having trouble figuring out what they want the probability of and how to do the math in excel. I have tried the text book and I'm most likely overthinking it. Thank you!
AIRSHOW -- US MILITARY PERFORMANCE Tankers Transport Bomber Fighters Sortie Flight Name Sortie KC-135 Airshow KC-10 C-17 B-52 F-15 F-16 F-22 F-35 Mean Sortie 1 2.36 Standard Deviation Day Number 3.70 3.65 3.82 3.38 Sortie 2 0.69 2.30 2.15 1 3.24 2.50 4.26 2.89 Sortie 3 0.87 2.36 1.80 2.00 2.05 Sortie 4 0.28 2.45 2.12 3.00 2.52 Sortie 5 0.44 2.55 2.65 2.65 2.62 Sortie 6 0.06 3.00 1.75 2.38 Sortie 7 0.88 3.00 1.75 2.38 Sortie 8 0.88 3.00 2.75 1.00 1.00 1.25 0.98 0.75 0.65 1.42 Sortie 9 0.92 2.95 3.10 1.10 1.10 1.26 0.12 0.13 0.12 1.24 Sortie 10 1.20 2.70 1.60 1.05 0.50 0.98 0.98 0.97 0.92 1.21 Sortie 11 0.67 14.71 5.60 10.16 Sortie 12 6.44 3.00 NNNN NN PPPPPP 1.00 1.00 Sortie 13 1.67 0.94 3.00 1.00 1.00 1.40 1.00 1.48 Sortie 14 0.78 3.81 2.00 1.25 1.15 1.15 1.87 Sortie 15 1.02 4.00 2.65 3.33 Sortie 16 0.67 4.00 2.50 1.40 3.24 2.50 2.73 Sortie 17 0.97 3.70 3.00 1.05 10.50 1.98 1.96 1.97 1.92 3.26 3.03 Mean 3.78 2.33 1.49 2.39 1.62 1.86 1.66 2.04 Standard Deviation 2.97 0.52 0.58 2.96 0.87 1.22 1.30 1.84 Z-Score Value -0.36518397 -1.40207 -0.76159995 -0.638191 -0.73083 -0.7186 -0.53341 Probability -0.6094467Introduction E This discussion introduces you to normal probability via the calculated Z-score. A Z-score converts a non-standard normal distribution into a standard normal distribution; a standard normal distribution has a mean of zero and standard deviation of one. Additional z-score properties and details are provided later in the course. For this assignment, what is needed is the capability to calculate a z-score and nd its associated probability (see Table A-2 in your textbook). Here is an example: 0 Excel equation: 2 = (Your Score (X) - Mean)/(Standard Deviation) OR Z = (X - Mean)/S. - Z-score and probability calculation example: 0 Assume Intelligent Quotient (IQ) scores are normally distributed with a Mean of 100 and Standard Deviation of 15. 0 Assume a friend has an IQ score of 130 (X). o The z-score is then calculated: 2 = (130 100)/15 = 30/15 = 2.00. 0 Find Table A-2 in your textbook. The probability (green shaded area) associated with z = 2.00 is p = 0.9772. c The probability of anotherfriend scoring \"higher\" (non-shaded area) than 130 is: p = (1.0000 0.9772) = 0.0228 or 2.28%. Scenario Day 2 of the airshow arrives, and the weather is worsening. The temperature is 50F, and strong thunderstorms are predicted. Continuing intermittent moderate to strong runway crosswinds (25 Knots sustained, with gusts to 40 Knots). Fortunately, all Day 2 ying sorties are accomplished with only minor incidents. Your team collected these simulated data for Day 2 ying sorties: AIRSHOW -- US MILITARY AIRCRAFT PERFORMANCE Tankers Transg Bomber Fighters Sortie Sortie Airshow Flight Name K0135 m E Day Number Sonia 1 2.35 3.70 3.65 3.82 1 Sortie 2 2.30 2.15 3.24 2.50 4.26 Sortie 3 2.36 Sortie 4 2.45 Sortie 5 2.55 Sortie 6 3.00 Sortie 7 3.0) Sortie 8 3.\") Sortie 9 2.95 Sortie 10 2.70 Sortla 11 14.71 Sortie 12 3.0) Sonic 13 3.0) Sortie 14 3.81 Sortie 15 44!) Sonic 16 Ml) Sal-tie 17 3.70 M Standard Deviation Z-Score Value Probabilig NNNNNNHHHHHHHHHH Text description of Day 2 Data (PDF) i, Complete a In Microsoft Excel, complete the "Airshow - US Military Aircraft Performance" table by adding the calculated column and row values for mean, standard deviation, and zscore column values (use Sortie 10 data as the value of "X" in the z-score equation); report your calculated values to two decimal places (i.e., 0.12). For reporting probability, use Table A-2 in your textbook and report the value of p to four decimal places (i.e., 0.1234). Save your work as a le to your computer and then read the Canvas instructions on How do | embed an image in a discussion reply as a student? :2- 734 APPENDIX A Tables NEGATIVE z Scores z 0 TABLE A-2 Standard Normal (2) Distribution: Cumulative Area from the LEFT 1 .00 .01 .02 .03 .04 .05 .05 .07 .09 .09 350 and law .0001 3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002 3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 -3.2 .0007 .0007 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 3.1 .0010 .0009 .0000 .0009 .0009 .0009 .0009 .0003 .0007 0007 3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010 -29 .0019 .0019 .0019 .0017 .0015 0019 .0015 .0015 .0014 0014 2.9 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019 27 .0035 .0034 .0033 .0032 .0031 0030 .0029 .0029 .0027 .0025 2.5 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0039 .0037 .0035 25 .0052 .0090 .0059 .0057 .0055 .0054 .0052 .0051 ~ 0049 0049 -2.4 .0092 .0090 .0079 .0075 .0073 .0071 .0059 .0055 .0055 .0054 23 .0107 .0104 .0102 .0099 .0095 .0094 .0001 .0099 .0097 .0004 2.2 .0139 .0135 .0132 .0129 .0125 .0122 .0119 .0115 .0113 .0110 21 .0179 .0174 .0170 .0155 .0152 .0159 .0154 .0150 .0145 .0143 2.0 .0229 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0199 .0193 1.0 .0297 .0291 .0274 .0259 .0252 .0255 .0250 .0244 .0239 .0233 1.9 .0353 .0351 .0344 .0335 .0329 .0322 .0314 .0307 .0301 .0294 1.7 .0445 .0435 .0427 .0419 .0409 0401 .0392 .0394 .0375 .0357 1.5 .0549 .0537 .0525 .0515 .0505 ~ .0495 .0495 .0475 .0495 .0455 -1.6 .0548 .0537 .0526 .0516 0505 .0495 0485 .0475 0465 .0455 -1.5 .0668 .0655 .0643 .0630 0618 .0606 .0594 0582 0571 .0559 -1.4 0808 .0793 0778 .0764 0749 .0735 0721 0708 0694 0681 -1.3 .0968 0951 .0934 0918 0901 0885 0869 0853 0838 0823 -1.2 1151 .1131 .1112 .1093 .1075 .1056 1038 1020 1003 0985 -1.1 .1357 .1335 .1314 .1292 1271 .1251 1230 1210 .1190 1170 -1.0 .1587 .1562 .1539 .1515 1492 .1469 1446 .1423 1401 .1379 -0.9 .1841 .1814 .1788 .1762 1736 .1711 1685 1660 1635 1611 -0.8 2119 2090 2061 2033 2005 .1977 1949 1922 1894 1867 -0.7 .2420 .2389 2358 .2327 2296 .2266 2236 2206 2177 2148 -0.6 .2743 .2709 2676 2643 2611 2578 2546 2514 2483 .2451 -0.5 3085 .3050 .3015 .2981 2946 .2912 2877 2843 2810 2776 -0.4 3446 3409 3372 3336 .3300 .3264 3228 3192 .3156 3121 -0.3 3821 .3783 3745 3707 .3669 .3632 3594 3557 3520 3483 -0.2 4207 .4168 4129 4090 4052 4013 3974 3936 3897 3859 -0.1 4602 4562 4522 .4483 4443 4404 4364 4325 4286 4247 -0.0 .5000 4960 4920 4880 4840 4801 4761 4721 4681 4641 NOTE: For values of z below -3.49, use 0.0001 for the area. (continued ) *Use these common values that result from interpolation: z Score Area -1.645 0.0500 -2.575 0.0050