Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

I need the following code to output two graphs using matplotlib. I am suppose to use the subplots() function to have two side by side

I need the following code to output two graphs using matplotlib. I am suppose to use the subplots() function to have two side by side graphs for comparison. Using the code i have already written, can someone help me get to the two graphs. I have also attached the formatting code. I really just need help implementing the subplots() function that works with my code on the specified output. Other specifications include the high temperatures plotted in red and the lows plotted in blue for each graph as well as the space between the highs and lows shaded in a lighter blue. I have provided the code for the shading.

image text in transcribed

image text in transcribed

image text in transcribed

import csv open_file1 = open("sitka_weather_072018_simple.csv", "r") open_file2 = open("death_valley_2018_simple.csv", "r") from datetime import datetime csv_file1 csv. reader(open_filei, delimiter=",") csv_file2 csv. reader(open_file2, delimiter=",") header_row1 = next(csv_file1) header_row2 = next(csv_file2) print(type( header_row2: list print(type (header_row2)) for index, column_header in enumerate(header_rowl): print("Index:", index, "Column Name:", column_header) for index, column_header in enumerate(header_row2): print("Index:", index, "Column Name:", column_header) highs dates lows [] [] [] for row in csv_file1: try: high int(row[5]) low = int(row[6]). converted_date = datetime.strptime ( row[2], "%Y-%m-%d") except ValueError: print(f"missing data for {converted_date}") else: highs.append(high) lows.append(low) dates.append(converted_date) for row in csv_file2: try: high int(row [4]) low = int(row [5]). converted_date = datetime. strptime ( row [2], "%Y-%m-%d") = except ValueError: print(f"missing data for {converted_date}") else: highs.append(high) lows.append (low) dates.append(converted_date) fig.autofmt_xdate() plt.fill_between (dates, highs, lows, facecolor="blue", alpha=0.1) 2018", fontsize=16) plt.title("Daily high and low temperatures Sitka plt.xlabel("", fontsize=12) plt.ylabel("Temperature (F)", fontsize=12) plt.tick_params (axis="both", labelsize=12) plt.show() import csv open_file1 = open("sitka_weather_072018_simple.csv", "r") open_file2 = open("death_valley_2018_simple.csv", "r") from datetime import datetime csv_file1 csv. reader(open_filei, delimiter=",") csv_file2 csv. reader(open_file2, delimiter=",") header_row1 = next(csv_file1) header_row2 = next(csv_file2) print(type( header_row2: list print(type (header_row2)) for index, column_header in enumerate(header_rowl): print("Index:", index, "Column Name:", column_header) for index, column_header in enumerate(header_row2): print("Index:", index, "Column Name:", column_header) highs dates lows [] [] [] for row in csv_file1: try: high int(row[5]) low = int(row[6]). converted_date = datetime.strptime ( row[2], "%Y-%m-%d") except ValueError: print(f"missing data for {converted_date}") else: highs.append(high) lows.append(low) dates.append(converted_date) for row in csv_file2: try: high int(row [4]) low = int(row [5]). converted_date = datetime. strptime ( row [2], "%Y-%m-%d") = except ValueError: print(f"missing data for {converted_date}") else: highs.append(high) lows.append (low) dates.append(converted_date) fig.autofmt_xdate() plt.fill_between (dates, highs, lows, facecolor="blue", alpha=0.1) 2018", fontsize=16) plt.title("Daily high and low temperatures Sitka plt.xlabel("", fontsize=12) plt.ylabel("Temperature (F)", fontsize=12) plt.tick_params (axis="both", labelsize=12) plt.show()

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Beyond Big Data Using Social MDM To Drive Deep Customer Insight

Authors: Martin Oberhofer, Eberhard Hechler

1st Edition

0133509796, 9780133509793

More Books

Students also viewed these Databases questions