Question
Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species 1 5.1 3.5 1.4 0.2 Iris-setosa 2 4.9 3.0 1.4 0.2 Iris-setosa 3 4.7 3.2 1.3 0.2 Iris-setosa 4
Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species 1 5.1 3.5 1.4 0.2 Iris-setosa 2 4.9 3.0 1.4 0.2 Iris-setosa 3 4.7 3.2 1.3 0.2 Iris-setosa 4 4.6 3.1 1.5 0.2 Iris-setosa 5 5.0 3.6 1.4 0.2 Iris-setosa 6 5.4 3.9 1.7 0.4 Iris-setosa 7 4.6 3.4 1.4 0.3 Iris-setosa 8 5.0 3.4 1.5 0.2 Iris-setosa 9 4.4 2.9 1.4 0.2 Iris-setosa 10 4.9 3.1 1.5 0.1 Iris-setosa 11 5.4 3.7 1.5 0.2 Iris-setosa 12 4.8 3.4 1.6 0.2 Iris-setosa 13 4.8 3.0 1.4 0.1 Iris-setosa 14 4.3 3.0 1.1 0.1 Iris-setosa 15 5.8 4.0 1.2 0.2 Iris-setosa 16 5.7 4.4 1.5 0.4 Iris-setosa 17 5.4 3.9 1.3 0.4 Iris-setosa 18 5.1 3.5 1.4 0.3 Iris-setosa 19 5.7 3.8 1.7 0.3 Iris-setosa 20 5.1 3.8 1.5 0.3 Iris-setosa 21 5.4 3.4 1.7 0.2 Iris-setosa 22 5.1 3.7 1.5 0.4 Iris-setosa 23 4.6 3.6 1.0 0.2 Iris-setosa 24 5.1 3.3 1.7 0.5 Iris-setosa 25 4.8 3.4 1.9 0.2 Iris-setosa 26 5.0 3.0 1.6 0.2 Iris-setosa 27 5.0 3.4 1.6 0.4 Iris-setosa 28 5.2 3.5 1.5 0.2 Iris-setosa 29 5.2 3.4 1.4 0.2 Iris-setosa 30 4.7 3.2 1.6 0.2 Iris-setosa 31 4.8 3.1 1.6 0.2 Iris-setosa 32 5.4 3.4 1.5 0.4 Iris-setosa 33 5.2 4.1 1.5 0.1 Iris-setosa 34 5.5 4.2 1.4 0.2 Iris-setosa 35 4.9 3.1 1.5 0.1 Iris-setosa 36 5.0 3.2 1.2 0.2 Iris-setosa 37 5.5 3.5 1.3 0.2 Iris-setosa 38 4.9 3.1 1.5 0.1 Iris-setosa 39 4.4 3.0 1.3 0.2 Iris-setosa 40 5.1 3.4 1.5 0.2 Iris-setosa 41 5.0 3.5 1.3 0.3 Iris-setosa 42 4.5 2.3 1.3 0.3 Iris-setosa 43 4.4 3.2 1.3 0.2 Iris-setosa 44 5.0 3.5 1.6 0.6 Iris-setosa 45 5.1 3.8 1.9 0.4 Iris-setosa 46 4.8 3.0 1.4 0.3 Iris-setosa 47 5.1 3.8 1.6 0.2 Iris-setosa 48 4.6 3.2 1.4 0.2 Iris-setosa 49 5.3 3.7 1.5 0.2 Iris-setosa 50 5.0 3.3 1.4 0.2 Iris-setosa 51 7.0 3.2 4.7 1.4 Iris-versicolor 52 6.4 3.2 4.5 1.5 Iris-versicolor 53 6.9 3.1 4.9 1.5 Iris-versicolor 54 5.5 2.3 4.0 1.3 Iris-versicolor 55 6.5 2.8 4.6 1.5 Iris-versicolor 56 5.7 2.8 4.5 1.3 Iris-versicolor 57 6.3 3.3 4.7 1.6 Iris-versicolor 58 4.9 2.4 3.3 1.0 Iris-versicolor 59 6.6 2.9 4.6 1.3 Iris-versicolor 60 5.2 2.7 3.9 1.4 Iris-versicolor 61 5.0 2.0 3.5 1.0 Iris-versicolor 62 5.9 3.0 4.2 1.5 Iris-versicolor 63 6.0 2.2 4.0 1.0 Iris-versicolor 64 6.1 2.9 4.7 1.4 Iris-versicolor 65 5.6 2.9 3.6 1.3 Iris-versicolor 66 6.7 3.1 4.4 1.4 Iris-versicolor 67 5.6 3.0 4.5 1.5 Iris-versicolor 68 5.8 2.7 4.1 1.0 Iris-versicolor 69 6.2 2.2 4.5 1.5 Iris-versicolor 70 5.6 2.5 3.9 1.1 Iris-versicolor 71 5.9 3.2 4.8 1.8 Iris-versicolor 72 6.1 2.8 4.0 1.3 Iris-versicolor 73 6.3 2.5 4.9 1.5 Iris-versicolor 74 6.1 2.8 4.7 1.2 Iris-versicolor 75 6.4 2.9 4.3 1.3 Iris-versicolor 76 6.6 3.0 4.4 1.4 Iris-versicolor 77 6.8 2.8 4.8 1.4 Iris-versicolor 78 6.7 3.0 5.0 1.7 Iris-versicolor 79 6.0 2.9 4.5 1.5 Iris-versicolor 80 5.7 2.6 3.5 1.0 Iris-versicolor 81 5.5 2.4 3.8 1.1 Iris-versicolor 82 5.5 2.4 3.7 1.0 Iris-versicolor 83 5.8 2.7 3.9 1.2 Iris-versicolor 84 6.0 2.7 5.1 1.6 Iris-versicolor 85 5.4 3.0 4.5 1.5 Iris-versicolor 86 6.0 3.4 4.5 1.6 Iris-versicolor 87 6.7 3.1 4.7 1.5 Iris-versicolor 88 6.3 2.3 4.4 1.3 Iris-versicolor 89 5.6 3.0 4.1 1.3 Iris-versicolor 90 5.5 2.5 4.0 1.3 Iris-versicolor 91 5.5 2.6 4.4 1.2 Iris-versicolor 92 6.1 3.0 4.6 1.4 Iris-versicolor 93 5.8 2.6 4.0 1.2 Iris-versicolor 94 5.0 2.3 3.3 1.0 Iris-versicolor 95 5.6 2.7 4.2 1.3 Iris-versicolor 96 5.7 3.0 4.2 1.2 Iris-versicolor 97 5.7 2.9 4.2 1.3 Iris-versicolor 98 6.2 2.9 4.3 1.3 Iris-versicolor 99 5.1 2.5 3.0 1.1 Iris-versicolor 100 5.7 2.8 4.1 1.3 Iris-versicolor 101 6.3 3.3 6.0 2.5 Iris-virginica 102 5.8 2.7 5.1 1.9 Iris-virginica 103 7.1 3.0 5.9 2.1 Iris-virginica 104 6.3 2.9 5.6 1.8 Iris-virginica 105 6.5 3.0 5.8 2.2 Iris-virginica 106 7.6 3.0 6.6 2.1 Iris-virginica 107 4.9 2.5 4.5 1.7 Iris-virginica 108 7.3 2.9 6.3 1.8 Iris-virginica 109 6.7 2.5 5.8 1.8 Iris-virginica 110 7.2 3.6 6.1 2.5 Iris-virginica 111 6.5 3.2 5.1 2.0 Iris-virginica 112 6.4 2.7 5.3 1.9 Iris-virginica 113 6.8 3.0 5.5 2.1 Iris-virginica 114 5.7 2.5 5.0 2.0 Iris-virginica 115 5.8 2.8 5.1 2.4 Iris-virginica 116 6.4 3.2 5.3 2.3 Iris-virginica 117 6.5 3.0 5.5 1.8 Iris-virginica 118 7.7 3.8 6.7 2.2 Iris-virginica 119 7.7 2.6 6.9 2.3 Iris-virginica 120 6.0 2.2 5.0 1.5 Iris-virginica 121 6.9 3.2 5.7 2.3 Iris-virginica 122 5.6 2.8 4.9 2.0 Iris-virginica 123 7.7 2.8 6.7 2.0 Iris-virginica 124 6.3 2.7 4.9 1.8 Iris-virginica 125 6.7 3.3 5.7 2.1 Iris-virginica 126 7.2 3.2 6.0 1.8 Iris-virginica 127 6.2 2.8 4.8 1.8 Iris-virginica 128 6.1 3.0 4.9 1.8 Iris-virginica 129 6.4 2.8 5.6 2.1 Iris-virginica 130 7.2 3.0 5.8 1.6 Iris-virginica 131 7.4 2.8 6.1 1.9 Iris-virginica 132 7.9 3.8 6.4 2.0 Iris-virginica 133 6.4 2.8 5.6 2.2 Iris-virginica 134 6.3 2.8 5.1 1.5 Iris-virginica 135 6.1 2.6 5.6 1.4 Iris-virginica 136 7.7 3.0 6.1 2.3 Iris-virginica 137 6.3 3.4 5.6 2.4 Iris-virginica 138 6.4 3.1 5.5 1.8 Iris-virginica 139 6.0 3.0 4.8 1.8 Iris-virginica 140 6.9 3.1 5.4 2.1 Iris-virginica 141 6.7 3.1 5.6 2.4 Iris-virginica 142 6.9 3.1 5.1 2.3 Iris-virginica 143 5.8 2.7 5.1 1.9 Iris-virginica 144 6.8 3.2 5.9 2.3 Iris-virginica 145 6.7 3.3 5.7 2.5 Iris-virginica 146 6.7 3.0 5.2 2.3 Iris-virginica 147 6.3 2.5 5.0 1.9 Iris-virginica 148 6.5 3.0 5.2 2.0 Iris-virginica 149 6.2 3.4 5.4 2.3 Iris-virginica 150 5.9 3.0 5.1 1.8 Iris-virginica
ogramming elements: incipal Component Analysis class programming: 1. Principal Component Analysis a. Apply PCA on CC dataset. b. Apply k-means algorithm on the PCA result and report your observation if the silhouette score has improved or not? c. Perform Scaling+PCA+K-Means and report performance. 2. Use pd_speech_features.csv a. Perform Scaling b. Apply PCA (k=3) c. Use SVM to report performance 3. Apply Linear Discriminant Analysis (LDA) on Iris.cSv dataset to reduce dimensionality of data to k=2. 4. Briefly identify the difference between PCA and LDA ogramming elements: incipal Component Analysis class programming: 1. Principal Component Analysis a. Apply PCA on CC dataset. b. Apply k-means algorithm on the PCA result and report your observation if the silhouette score has improved or not? c. Perform Scaling+PCA+K-Means and report performance. 2. Use pd_speech_features.csv a. Perform Scaling b. Apply PCA (k=3) c. Use SVM to report performance 3. Apply Linear Discriminant Analysis (LDA) on Iris.cSv dataset to reduce dimensionality of data to k=2. 4. Briefly identify the difference between PCA and LDAStep by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started