Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

import seaborn as sns import matplotlib.pyplot as plt import pandas as pd # Create the DataFrame from the table data data = { 'Risk Description':

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# Create the DataFrame from the table data
data ={
'Risk Description': [
'Unwanted Outputs, Bias',
'Lack of Quality, Factuality',
'Lack of Timeliness',
'Lack of Explainability',
'Insecure Generated Code',
'Incorrect Response to Inputs',
'Automation Bias',
'Misinterpreting Text as Instruction',
'Lack of Confidentiality',
'Self-reinforcing Impacts',
'Developer Dependence',
'Misinformation',
'Social Engineering',
'Re-identification',
'Surveillance Concerns',
'Malware Creation',
'Malware Placement',
'RCE Attacks',
'Training Data Reconstruction',
'Model Subversion',
'Member Reasoning Attacks',
'Homograph Attacks',
'Prompt Injection Attacks',
'Data Poisoning',
'Model Poisoning',
'Learning Transfer Attacks',
'Environmental Impact',
'Economic Disruption',
'Overreliance/Dependency',
'Dual Use Concerns',
'Unforeseen Consequences'
],
'Planning': [1,0,1,0,0,0,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0],
'Data': [1,1,1,0,0,1,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0],
'Development': [1,1,0,1,1,1,0,1,1,1,1,1,1,0,1,1,0,0,1,1,1,0,1,0,1,0,0,0,0,0],
'Operation': [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0],
'Ethical': [1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1],
'Legal': [1,1,0,1,1,1,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
'Technical': [1,1,0,1,1,0,0,0,1,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0],
'Societal': [1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1],
'Economic': [1,1,1,0,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0],
}
df = pd.DataFrame(data)
plt.figure(figsize=(15,10)) # Adjust figure size as needed
sns.set(font_scale=0.9) # Adjust font size for readability
sns.heatmap(df.set_index('Risk Description').transpose(), cmap="YlOrRd", annot=True, fmt='d', cbar_kws={'label': 'Risk Presence'})
plt.title('AI System Lifecycle & Impact Risk Assessment Heatmap', fontsize=14)
plt.xlabel('Lifecycle Phase / Impact Category', fontsize=12)
plt.ylabel('Risk Description', fontsize=12)
plt.xticks(rotation=45, ha="right", fontsize=10) # Rotate x-axis labels for better readability
plt.yticks(fontsize=10)
plt.show() Let's create a heatmap to visualize the AI risks across the lifecycle phases and their broader impacts.

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database Concepts

Authors: David M. Kroenke, David J. Auer

7th edition

133544621, 133544626, 0-13-354462-1, 978-0133544626

More Books

Students also viewed these Databases questions