Question
In JAVA I am using Data Structure and algoritms in Java Second Edition Start with the tree.java program (Listing 8.1) and modify it to create
In JAVA
I am using Data Structure and algoritms in Java Second Edition
Start with the tree.java program (Listing 8.1) and modify it to create a binary tree from a string of letters (like A, B, and so on) entered by the user. Each letter will be displayed in its own node. Construct the tree so that all the nodes that contain letters are leaves. Parent nodes can contain some non-letter symbol like +. Make sure that every parent node has exactly two children. Dont worry if the tree is unbalanced. Note that this will not be a search tree; theres no quick way to find a given node. You may end up with something like this: + + E + D - - + C - - - - - - A B - - - - - - - - - - - - - -
Expand the program in Programming Project 8.1 to create a balanced tree. One way to do this is to make sure that as many leaves as possible appear in the bottom row. You can start by making a three-node tree out of each pair of onenode trees, making a new + node for the root. This results in a forest of threenode trees. Then combine each pair of three-node trees to make a forest of seven-node trees. As the number of nodes per tree grows, the number of trees shrinks, until finally there is only one tree left.
Here is the example tree.java program to use.
// tree.java // demonstrates binary tree // to run this program: C>java TreeApp import java.io.*; import java.util.*; // for Stack class //////////////////////////////////////////////////////////////// class Node { public int iData; // data item (key) public double dData; // data item public Node leftChild; // this node's left child public Node rightChild; // this node's right child
public void displayNode() // display ourself { System.out.print('{'); System.out.print(iData); System.out.print(", "); System.out.print(dData); System.out.print("} "); } } // end class Node //////////////////////////////////////////////////////////////// class Tree { private Node root; // first node of tree
// ------------------------------------------------------------- public Tree() // constructor { root = null; } // no nodes in tree yet // ------------------------------------------------------------- public Node find(int key) // find node with given key { // (assumes non-empty tree) Node current = root; // start at root while(current.iData != key) // while no match, { if(key < current.iData) // go left? current = current.leftChild; else // or go right? current = current.rightChild; if(current == null) // if no child, return null; // didn't find it } return current; // found it } // end find() // ------------------------------------------------------------- public void insert(int id, double dd) { Node newNode = new Node(); // make new node newNode.iData = id; // insert data newNode.dData = dd; if(root==null) // no node in root root = newNode; else // root occupied { Node current = root; // start at root Node parent; while(true) // (exits internally) { parent = current; if(id < current.iData) // go left? { current = current.leftChild; if(current == null) // if end of the line, { // insert on left parent.leftChild = newNode; return; } } // end if go left else // or go right? { current = current.rightChild; if(current == null) // if end of the line { // insert on right parent.rightChild = newNode; return; } } // end else go right } // end while } // end else not root } // end insert() // ------------------------------------------------------------- public boolean delete(int key) // delete node with given key { // (assumes non-empty list) Node current = root; Node parent = root; boolean isLeftChild = true;
while(current.iData != key) // search for node { parent = current; if(key < current.iData) // go left? { isLeftChild = true; current = current.leftChild; } else // or go right? { isLeftChild = false; current = current.rightChild; } if(current == null) // end of the line, return false; // didn't find it } // end while // found node to delete
// if no children, simply delete it if(current.leftChild==null && current.rightChild==null) { if(current == root) // if root, root = null; // tree is empty else if(isLeftChild) parent.leftChild = null; // disconnect else // from parent parent.rightChild = null; }
// if no right child, replace with left subtree else if(current.rightChild==null) if(current == root) root = current.leftChild; else if(isLeftChild) parent.leftChild = current.leftChild; else parent.rightChild = current.leftChild;
// if no left child, replace with right subtree else if(current.leftChild==null) if(current == root) root = current.rightChild; else if(isLeftChild) parent.leftChild = current.rightChild; else parent.rightChild = current.rightChild;
else // two children, so replace with inorder successor { // get successor of node to delete (current) Node successor = getSuccessor(current);
// connect parent of current to successor instead if(current == root) root = successor; else if(isLeftChild) parent.leftChild = successor; else parent.rightChild = successor;
// connect successor to current's left child successor.leftChild = current.leftChild; } // end else two children // (successor cannot have a left child) return true; // success } // end delete() // ------------------------------------------------------------- // returns node with next-highest value after delNode // goes to right child, then right child's left descendents private Node getSuccessor(Node delNode) { Node successorParent = delNode; Node successor = delNode; Node current = delNode.rightChild; // go to right child while(current != null) // until no more { // left children, successorParent = successor; successor = current; current = current.leftChild; // go to left child } // if successor not if(successor != delNode.rightChild) // right child, { // make connections successorParent.leftChild = successor.rightChild; successor.rightChild = delNode.rightChild; } return successor; } // ------------------------------------------------------------- public void traverse(int traverseType) { switch(traverseType) { case 1: System.out.print(" Preorder traversal: "); preOrder(root); break; case 2: System.out.print(" Inorder traversal: "); inOrder(root); break; case 3: System.out.print(" Postorder traversal: "); postOrder(root); break; } System.out.println(); } // ------------------------------------------------------------- private void preOrder(Node localRoot) { if(localRoot != null) { System.out.print(localRoot.iData + " "); preOrder(localRoot.leftChild); preOrder(localRoot.rightChild); } } // ------------------------------------------------------------- private void inOrder(Node localRoot) { if(localRoot != null) { inOrder(localRoot.leftChild); System.out.print(localRoot.iData + " "); inOrder(localRoot.rightChild); } } // ------------------------------------------------------------- private void postOrder(Node localRoot) { if(localRoot != null) { postOrder(localRoot.leftChild); postOrder(localRoot.rightChild); System.out.print(localRoot.iData + " "); } } // ------------------------------------------------------------- public void displayTree() { Stack globalStack = new Stack(); globalStack.push(root); int nBlanks = 32; boolean isRowEmpty = false; System.out.println( "......................................................"); while(isRowEmpty==false) { Stack localStack = new Stack(); isRowEmpty = true;
for(int j=0; j while(globalStack.isEmpty()==false) { Node temp = (Node)globalStack.pop(); if(temp != null) { System.out.print(temp.iData); localStack.push(temp.leftChild); localStack.push(temp.rightChild); if(temp.leftChild != null || temp.rightChild != null) isRowEmpty = false; } else { System.out.print("--"); localStack.push(null); localStack.push(null); } for(int j=0; j theTree.insert(50, 1.5); theTree.insert(25, 1.2); theTree.insert(75, 1.7); theTree.insert(12, 1.5); theTree.insert(37, 1.2); theTree.insert(43, 1.7); theTree.insert(30, 1.5); theTree.insert(33, 1.2); theTree.insert(87, 1.7); theTree.insert(93, 1.5); theTree.insert(97, 1.5); while(true) { System.out.print("Enter first letter of show, "); System.out.print("insert, find, delete, or traverse: "); int choice = getChar(); switch(choice) { case 's': theTree.displayTree(); break; case 'i': System.out.print("Enter value to insert: "); value = getInt(); theTree.insert(value, value + 0.9); break; case 'f': System.out.print("Enter value to find: "); value = getInt(); Node found = theTree.find(value); if(found != null) { System.out.print("Found: "); found.displayNode(); System.out.print(" "); } else System.out.print("Could not find "); System.out.print(value + ' '); break; case 'd': System.out.print("Enter value to delete: "); value = getInt(); boolean didDelete = theTree.delete(value); if(didDelete) System.out.print("Deleted " + value + ' '); else System.out.print("Could not delete "); System.out.print(value + ' '); break; case 't': System.out.print("Enter type 1, 2 or 3: "); value = getInt(); theTree.traverse(value); break; default: System.out.print("Invalid entry "); } // end switch } // end while } // end main() // ------------------------------------------------------------- public static String getString() throws IOException { InputStreamReader isr = new InputStreamReader(System.in); BufferedReader br = new BufferedReader(isr); String s = br.readLine(); return s; } // ------------------------------------------------------------- public static char getChar() throws IOException { String s = getString(); return s.charAt(0); } //------------------------------------------------------------- public static int getInt() throws IOException { String s = getString(); return Integer.parseInt(s); } // ------------------------------------------------------------- } // end class TreeApp ////////////////////////////////////////////////////////////////
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started