Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

In this problem, consider a skip list with n >= 2 elements. As described in class, the height (number of levels) of each node is

In this problem, consider a skip list with n >= 2 elements. As described in class, the height (number of levels) of each node is randomly determined. For simplicity, assume that n is a power of 2 (i.e. log2 n is an integer). Let M be the maximum level of all nodes. (log2 means log_2)

3. Prove that Pr[M >=k log2 n + 1] is at most 1/n^k-1 . 4. Using the above facts, prove that the expected maximum level of all nodes is (log n).

"The above facts" are these 2 points:

1. One specific node has at least k log2 n + 1 levels. 2. Pr[M log2 n + 1] is at least 1

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Beginning Microsoft SQL Server 2012 Programming

Authors: Paul Atkinson, Robert Vieira

1st Edition

1118102282, 9781118102282

More Books

Students also viewed these Databases questions

Question

Is it possible to create entropy? Is it possible to destroy it?

Answered: 1 week ago