Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

In this question, you will use the MGF to show that the binomial distribution converges to the Poisson distribution as n goes to infinity. (a)

In this question, you will use the MGF to show that the binomial distribution

converges to the Poisson distribution as n goes to infinity.

(a) (3 pts) Y1, ..., Yn are iid Poisson distributed random variable with the variance of np, and define Y = Y1 +...+Yn. Please find the MGF of Y, namely MY (t) for t R.

(b) (3 pts) X1,...,Xn are iid Bernoulli(np ) random variables, and define X = X1 + ... + Xn. Computes the MGF of X1 and X, namely MX1 (t) and MX (t) for t R.

(c) (4 pts) Prove that as n , the MGF of X converges to the MGF of Y , namely MX (t) MY (t) for t R.

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Business Analytics Data Analysis and Decision Making

Authors: S. Christian Albright, Wayne L. Winston

5th edition

1133629601, 9781285965529 , 978-1133629603

More Books

Students also viewed these Mathematics questions