Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

#include #include #define TILE _ SIZE 1 6 #define UNROLL _ FACTOR 8 void matrix _ multiplication ( int * A , int * B

#include
#include
#define TILE_SIZE 16
#define UNROLL_FACTOR 8
void matrix_multiplication(int *A, int *B, int *C, int N){
// Initialize result matrix C to 0
for (int i =0; i < N * N; ++i){
C[i]=0;
}
// Iterate over the tiles
for (int i =0; i < N; i += TILE_SIZE){
for (int j =0; j < N; j += TILE_SIZE){
for (int k =0; k < N; k += TILE_SIZE){
// Compute the block sub-matrix
for (int ii = i; ii < i + TILE_SIZE && ii < N; ++ii){
for (int jj = j; jj < j + TILE_SIZE && jj < N; ++jj){
int sum =0;
int kk;
for (kk = k; kk < k + TILE_SIZE && kk +(UNROLL_FACTOR -1)< N; kk += UNROLL_FACTOR){
// Prefetching next elements
__builtin_prefetch(&A[ii * N + kk + UNROLL_FACTOR],0,3);
__builtin_prefetch(&B[(kk + UNROLL_FACTOR)* N + jj],0,3);
// Loop unrolling
sum += A[ii * N + kk]* B[kk * N + jj];
sum += A[ii * N + kk +1]* B[(kk +1)* N + jj];
sum += A[ii * N + kk +2]* B[(kk +2)* N + jj];
sum += A[ii * N + kk +3]* B[(kk +3)* N + jj];
sum += A[ii * N + kk +4]* B[(kk +4)* N + jj];
sum += A[ii * N + kk +5]* B[(kk +5)* N + jj];
sum += A[ii * N + kk +6]* B[(kk +6)* N + jj];
sum += A[ii * N + kk +7]* B[(kk +7)* N + jj];
}
// Handle the remaining elements
for (; kk < k + TILE_SIZE && kk < N; ++kk){
sum += A[ii * N + kk]* B[kk * N + jj];
}
C[ii * N + jj]+= sum;
}
}
}
}
}
}
can sopmebody modify this withoput changing its functionality

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_step_2

Step: 3

blur-text-image_step3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

More Books

Students also viewed these Databases questions