Question
Instruction; Introduce the problem first. You may paraphrase the problem statement. Write in complete sentences! You can center important equations, but they should still be
Instruction; Introduce the problem first. You may paraphrase the problem statement. Write in complete sentences! You can center important equations, but they should still be part of your narrative flow. Write as if you were explaining the solution to another Math 121 student who hasn't seen the project yet. Your solution should be organized and have enough detail so that the reader can easily follow it.
(10 points) A television camera is positioned 4000 feet from the base of a rocket launching pad. The angle of elevation of the camera has to change at the correct rate in order to keep the rocket in sight. In addition, the auto-focus of the camera has to take into account the increasing distance between the camera and the rocket. We assume that the rocket rises vertically. (A similar problem is discussed and pictured dynamically at http://gvsu.edu/s/9t. Exploring the applet at the link may be helpful to you in answering the questions that follow.)
1) (a) Draw a figure that summarizes the given situation. What parts of the picture are changing? What parts are constant? Introduce appropriate variables to represent the quantities that are changing.
2) (b) Find an equation that relates the camera's angle of elevation to the height of the rocket, and then find an equation that relates the instantaneous rate of change of the camera's elevation angle to the instantaneous rate of change of the rocket's height (where all rates of change are with respect to time).
3) (c) Find an equation that relates the distance from the camera to the rocket to the rocket's height, as well as an equation that relates the instantaneous rate of change of distance from the camera to the rocket to the instantaneous rate of change of the rocket's height (where all rates of change are with respect to time).
4) (d) Suppose that the rocket's speed is 600 ft/sec at the instant it has risen 3000 feet. How fast is the distance from the television camera to the rocket changing at that moment? If the camera is following the rocket, how fast is the camera's angle of elevation changing at that same moment?
5) (e) If from an elevation of 3000 feet onward the rocket continues to rise at 600 feet/sec, will the rate of change of distance with respect to time be greater when the elevation is 4000 feet than it was at 3000 feet, or less? Why?
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started