Kelly Malone plans to have $52 withheld from her monthly paycheck and deposited in a savings account that earns 12% annually, compounded monthly. If Malone continues with her plan for one year, how much will be accumulated in the account on the date of the last deposit?
|
| Periodic Cash Flow | | Table Factor | | Total Accumulation | | | | = | | Table Values are Based on: | n | = | | | i | = | |
f= [(1 + i)" - 1]/i TABLE B.45 Future Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% OU 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.0100 2.0200 2.0300 2.0400 2.0500 2.0600 3.03013.0604 3.0909 3.1216 3.1525 3.1836 4.0604 4.1216 4.1836 4.2465 4.3101 4.3746 5.1010 5.20405.30915.4163 5.5256 5.6371 6.1520 6.3081 6.4684 6.6330 6.80196.9753 7.2135 7.4343 7.66257.89838.1420 8.3938 8.2857 8.5830 8.89239.2142 9.54919.8975 9.3685 9.7546 10.1591 10.5828 11.0266 11.4913 10.4622 10.9497 11.4639 12.006112.5779 13.1808 11.5668 12.1687 12.8078 13.4864 14.2068 14.9716 12.6825 13.4121 14.1920 15.0258 15.9171 16.8699 13.8093 14.6803 15.6178 16.6268 17.7130 18.8821 14.9474 15.9739 17.0863 18.2919 19.5986 21.0151 16.0969 17.2934 18.5989 20.0236 21.5786 23.2760 17.2579 18.6393 20.1569 21.8245 23.6575 25.6725 18.4304 20.0121 21.7616 23.6975 25.8404 28.2129 19.6147 21.4123 23.4144 25.6454 28.1324 30.9057 20.8109 22.8406 25.1169 27.6712 30.5390 33.7600 22.0190 24.2974 26.870429.778133.0660 36.7856 28.2432 32.0303 36.4593 41.6459 47.7271 54.8645 34.7849 40.5681 47.5754 56.084966.4388 79.0582 41.6603 49.994560.4621 73.652290.3203 111.4348 48.8864 60.4020 75.4013 95.0255 120.7998 154.7620 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.0700 2.0800 2.0900 2.1000 2.1200 2.1500 3.2149 3.2464 3.2781 3.3100 3.3744 3.4725 4.4399 4 .5061 4.5731 4.6410 4.7793 4.9934 5.7507 5.8666 5.98476.1051 6.3528 6.7424 7.1533 7.3359 7.52337.7156 8.1152 8.7537 8.65408 .9228 9.2004 9.4872 10.0890 11.0668 10.2598 10.6366 11.0285 11.4359 12.2997 13.7268 11.9780 12.4876 13.0210 13.5795 14.7757 16.7858 13.8164 14.4866 15.1929 15.9374 17.5487 20.3037 15.7836 16.6455 17.5603 18.5312 20.6546 24.3493 17.8885 18.9771 20.1407 21.3843 24.1331 29.0017 20.1406 21.4953 22.9534 24.5227 28.0291 34.3519 22.5505 24.2149 26.0192 27.9750 32.3926 40.5047 25.1290 27.1521 29.360931.7725 37.2797 47.5804 27.8881 30.3243 33.0034 35.9497 42.7533 55.7175 30.8402 33.7502 36.9737 40.5447 48.8837 65.0751 33.999037.450241.3013 45.5992 55.7497 75.8364 37.3790 41.4463 46.0185 51.1591 63.4397 88.2118 40.9955 45.7620 51.1601 57.2750 72.0524 63.2490 73.1059 84.700998.3471 133.3339 212.7930 94.4608 113.2832 136.3075 164.4940 241.3327 434.7451 138.2369 172.3168 215.7108 271.0244 431.6635 8 81.1702 199.6351 259.0565 337.8824 442.5926 767.0914 1.779.0903 20 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4,000 per year for 6 years assuming an annual interest rate of 8%? For (n=6,1 = 8%), the FV factor is 7.3359. $4.000 per year for 6 years accumulates to $29,343.60 ($4,000 X 7.3359). TABLE B.1 Present Value of 1 p=1/(1 + i)" Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 0.9901 0.9804 0.98030.9612 0.9706 0.9423 0.9610 0.9238 0.9515 0.9057 0.9420 0.8880 0.9327 0.8706 0.9235 0.8535 0.91430.8368 0.9053 0.8203 0.8963 0.8043 0.8874 0.7885 0.8787 0.7730 0.8700 0.7579 0.8613 0.7430 0.8528 0.7284 0.8444 0.7142 0.8360 0.7002 0.8277 0.6864 0.8195 0.6730 0.7798 0.6095 0.7419 0.5521 0.7059 0.5000 0.6717 0.4529 0.9709 0.9426 0.9151 0.8885 0.8626 0.8375 0.8131 0.7894 0.7664 0.7441 0.7224 0.7014 0.6810 0.6611 0.6419 0.6232 0.6050 0.5874 0.5703 0.5537 0.4776 0.4120 0.3554 0.3066 0.9615 0.9246 0.8890 0.8548 0.8219 0.7903 0.7599 0.7307 0.7026 0.6756 0.6496 0.6246 0.6006 0.5775 0.5553 0.5339 0.5134 0.4936 0.4746 0.4564 0.3751 0.3083 0.2534 0.2083 0.9524 0.9070 0.8638 0.8227 0.7835 0.7462 0.7107 0.6768 0.6446 0.6139 0.5847 0.5568 0.5303 0.5051 0.4810 0.4581 0.4363 0.4155 0.3957 0.3769 0.2953 0.2314 0.1813 0.1420 0.9434 0.8900 0.8396 0.7921 0.7473 0.7050 0.6651 0.6274 0.5919 0.5584 0.5268 0.4970 0.4688 0.4423 0.4173 0.3936 0.3714 0.3503 0.3305 0.3118 0.2330 0.1741 0.1301 0.0972 0.9346 0.8734 0.8163 0.7629 0.7130 0.6663 0.6227 0.5820 0.5439 0.5083 0.4751 0.4440 0.4150 0.3878 0.3624 0.3387 0.3166 0.2959 0.2765 0.2584 0.1842 0.1314 0.0937 0.0668 0.9259 0.8573 0.7938 0.7350 0.6806 0.6302 0.5835 0.5403 0.5002 0.4632 0.4289 0.3971 0.3677 0.3405 0.3152 0.2919 0.2703 0.2502 0.2317 0.2145 0.1460 0.0994 0.0676 0.0460 0.9174 0.9091 0.8417 0.8264 0.7722 0.7513 0.7084 0.6830 0.6499 0.6209 0.5963 0.5645 0.5470 0.5132 0.50190.4665 0.4604 0.4241 0.4224 0.3855 0.3875 0.3505 0.3555 0.3186 0.3262 0.2897 0.29920.2633 0.27450 .2394 0.2519 0.2176 0.2311 0.1978 0.2120 0.1799 0.1945 0.1635 0.1784 0.1486 0.1160 0.0923 0.0754 0.0573 0.0490 0.0356 0.0318 0.0221 0.8929 0.8696 0.7972 0.7561 0.7118 0.6575 0.6355 0.5718 0.5674 0.4972 0.5066 0.4323 0.4523 0.3759 0.4039 0.3269 0.3606 0.2843 0.3220 0.2472 0.2875 0.2149 0.2567 0.1869 0.2292 0.1625 0.2046 0.1413 0.1827 0.1229 0.1631 0.1069 0.1456 0.0929 0.13000.0808 0.1161 0.0703 0.1037 0.0611 0.0588 0.0304 0.0334 0.0151 0.0189 0.0075 0.0107 0.0037 *Used to compute the present value of a known future amount. For example: How much would you need to invest today at 10% compounded semiannually to accumulate $5,000 in 6 years from today? Using the factors of n= 12 and i = 5% (12 semiannual periods and a semiannual rate of 5%), the factor is 0.5568. You would need to invest $2,784 today (55.000 x 0.5568)