Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Let f : be a one-to-one function such that |f(w)| = |w| for all w . Define f

Let f : Σ∗ → Σ ∗ be a one-to-one function such that |f(w)| = |w| for all w ∈ Σ ∗ . Define f to be one-way if f is computable in polynomial time, but its inverse f −1 is not computable in polynomial time. Prove that if P = NP, then there are no such one-way functions.

Step by Step Solution

3.45 Rating (165 Votes )

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Calculus

Authors: Dale Varberg, Edwin J. Purcell, Steven E. Rigdon

9th edition

131429248, 978-0131429246

More Books

Students also viewed these Computer Engineering questions

Question

Shot that for a plane curve the torsion is (s) = 0.

Answered: 1 week ago