Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Let F(x, y) = (f(x, y), g(x, y)) be a vector function from R2 to R2 with ? f(x, y) = 2e 6Y cos(y) ?

image text in transcribed

Let F(x, y) = (f(x, y), g(x, y)) be a vector function from R2 to R2 with ? f(x, y) = 2e 6Y cos(y) ? g(x, y) = 2x2In(1+3y) Construct the linear approximation L(x, y) of F(x, y) at the point (2, 0). Use L(X, y) to approximate the F(2.01, -0.08) values. Give just the first coordinate of your approximation. So this question you must: 1. Compute the Jacobian J(x, y) of F(x, y). 2. Evaluate the Jacobian at point (2, O). 3. Construct the linear approximation L(x, y) of F(x, y) at point (2,0). 4. Calculate L(2.01, -0.08). 5. Even if the vector L(2.01, -0.08) has two components, submit only the first component below.Traduction Please see the file attached

image text in transcribed
Soit F(x, y) = (f(x, y), g(x, y)) une fonction vectorielle de R2 vers R2 avec . f ( x, y) = x2e by cos(y) . g(x, y) = 2x2In(1+3y) Construire l'approximation lineaire L(x, y) de F(x, y) au point (2, 0). Utilis approximer la valeurs F(2,01, -0,08). Donner juste la premiere coordon approximation. Donc cette question vous devez: 1. Calculer la jacobienne J(x, y) de F(x, y). 2. Evaluer la jacobienne au point (2, 0). 3. Construire l'approximation lineaire L(x, y) de F(x, y) au point (2, C 4. Calculer L(2,01, -0,08). 5. Meme si le vecteur L(2,01, -0,08) a deux composantes, soumett la premiere composante ci-bas. Donner votre reponse avec 4 decimales de precision

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

The Structure Of Functions

Authors: Hans Triebel

1st Edition

3034805691, 9783034805698

More Books

Students also viewed these Mathematics questions