Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Let the problem min / max f ( x , y ) subject to: x 2 + y 2 1 , x 2 + y
Let the problem min/maxf(x,y) subject to:
- x2+y21,
- x2+y10,
- x+y1 .
where f is a concave and differentiable function and X is the set of feasible solutions of the problem.
a) Explain if the following assumptions are true or false:
- If zX and f(z)=0 , then f reaches a maximum respect to X.
- If zX and f(z)=0 , is sure that z is not an optimal solution of f respect to X.
- The minimum of f in X can be reached at a point on the boundary that is not a vertex.
b) Let f(x,y)=2x+2y(x+y)2 .
- Do points (1,0) and (0,1) satisfy the Kuhn-Tucker conditions? Are optimal solutions? Are they unique?
- Does the point (0,-1) satisfy the Kuhn-Tucker conditions? What can be concluded about this point?
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started