Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Mark Welsch deposits $8,100 in an account that earns interest at an annual rate of 8%, compounded quarterly. The $8,100 plus earned interest must remain

Mark Welsch deposits $8,100 in an account that earns interest at an annual rate of 8%, compounded quarterly. The $8,100 plus earned interest must remain in the account 3 years before it can be withdrawn. How much money will be in the account at the end of 3 years? (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided. Round "Table Factor" to 4 decimal places.) Present Value Table Factor Total Accumulation $ 8,100 = Table B.1* Present Value of 1 p = 1/(1+i)" Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 1 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 0.9346 0.9259 0.9174 0.9091 0.8929 0.8696 1 2 0.9803 0.9612 0.9426 0.9246 0.9070 0.8900 0.8734 0.8573 0.8417 0.8264 0.7972 0.7561 2 3 0.9706 0.9423 0.9151 0.8890 0.8638 0.8396 0.8163 0.7938 0.7722 0.7513 0.7118 0.6575 3 4 0.9610 0.9238 0.8885 0.8548 0.8227 0.7921 0.7629 0.7350 0.7084 0.6830 0.6355 0.5718 4 5 0.9515 0.9057 0.8626 0.8219 0.7835 0.7473 0.7130 0.6806 0.6499 0.6209 0.5674 0.4972 5 6 0.9420 0.8880 0.8375 0.7903 0.7462 0.7050 0.6663 0.6302 0.5963 0.5645 0.5066 0.4323 6 7 0.9327 0.8706 0.8131 0.7599 0.7107 0.6651 0.6227 0.5835 0.5470 0.5132 0.4523 0.3759 7 8 0.9235 0.8535 0.7894 0.7307 0.6768 0.6274 0.5820 0.5403 0.5019 0.4665 0.4039 0.3269 8 9 0.9143 0.8368 0.7664 0.7026 0.6446 0.5919 0.5439 0.5002 0.4604 0.4241 0.3606 0.2843 9 10 0.9053 0.8203 0.7441 0.6756 0.6139 0.5584 0.5083 0.4632 0.4224 0.3855 0.3220 0.2472 10 11 0.8963 0.8043 0.7224 0.6496 0.5847 0.5268 0.4751 0.4289 0.3875 0.3505 0.2875 0.2149 11 12 0.8874 0.7885 0.7014 0.6246 0.5568 0.4970 0.4440 0.3971 0.3555 0.3186 0.2567 0.1869 12 13 0.8787 0.7730 0.6810 0.6006 0.5303 0.4688 0.4150 0.3677 0.3262 0.2897 0.2292 0.1625 13 14 0.8700 0.7579 0.6611 0.5775 0.5051 0.4423 0.3878 0.3405 0.2992 0.2633 0.2046 0.1413 14 15 0.8613 0.7430 0.6419 0.5553 0.4810 0.4173 0.3624 0.3152 0.2745 0.2394 0.1827 0.1229 15 16 0.8528 0.7284 0.6232 0.5339 0.4581 0.3936 0.3387 0.2919 0.2519 0.2176 0.1631 0.1069 16 17 0.8444 0.7142 0.6050 0.5134 0.4363 0.3714 0.3166 0.2703 0.2311 0.1978 0.1456 0.0929 17 18 0.8360 0.7002 0.5874 0.4936 0.4155 0.3503 0.2959 0.2502 0.2120 0.1799 0.1300 0.0808 18 19 0.8277 0.6864 0.5703 0.4746 0.3957 0.3305 0.2765 0.2317 0.1945 0.1635 0.1161 0.0703 19 20 0.8195 0.6730 0.5537 0.4564 0.3769 0.3118 0.2584 0.2145 0.1784 0.1486 0.1037 0.0611 20 25 0.7798 0.6095 0.4776 0.3751 0.2953 0.2330 0.1842 0.1460 0.1160 0.0923 0.0588 0.0304 25 30 0.7419 0.5521 0.4120 0.3083 0.2314 0.1741 0.1314 0.0994 0.0754 0.0573 0.0334 0.0151 30 35 0.7059 0.5000 0.3554 0.2534 0.1813 0.1301 0.0937 0.0676 0.0490 0.0356 0.0189 0.0075 35 40 0.6717 0.4529 0.3066 0.2083 0.1420 0.0972 0.0668 0.0460 0.0318 0.0221 0.0107 0.0037 40 *Used to compute the present value of a known future amount. For example: How much would you need to invest today at 10% compounded semiannually to accumulate $5,000 in 6 years from today Table B.2 Future Value of 1 f = (1 + i)" Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 1 1.0100 1.0200 1.0300 1.0400 1.0500 1.0600 1.0700 1.0800 1.0900 1.1000 1.1200 1.1500 1 2 1.0201 1.0404 1.0609 1.0816 1.1025 1.1236 1.1449 1.1664 1.1881 1.2100 1.2544 1.3225 2 3 1.0303 1.0612 1.0927 1.1249 1.1576 1.1910 1.2250 1.2597 1.2950 1.3310 1.4049 1.5209 3 4 1.0406 1.0824 1.1255 1.1699 1.2155 1.2625 1.3108 1.3605 1.4116 1.4641 1.5735 1.7490 4 5 1.0510 1.1041 1.1593 1.2167 1.2763 1.3382 1.4026 1.4693 1.5386 1.6105 1.7623 2.0114 5 6 1.0615 1.1262 1.1941 1.2653 1.3401 1.4185 1.5007 1.5869 1.6771 1.7716 1.9738 2.3131 6 7 1.0721 1.1487 1.2299 1.3159 1.4071 1.5036 1.6058 1.7138 1.8280 1.9487 2.2107 2.6600 7 8 1.0829 1.1717 1.2668 1.3686 1.4775 1.5938 1.7182 1.8509 1.9926 2.1436 2.4760 3.0590 8 9 1.0937 1.1951 1.3048 1.4233 1.5513 1.6895 1.8385 1.9990 2.1719 2.3579 2.7731 3.5179 9 10 1.1046 1.2190 1.3439 1.4802 1.6289 1.7908 1.9672 2.1589 2.3674 2.5937 3.1058 4.0456 10 11 1.1157 1.2434 1.3842 1.5395 1.7103 1.8983 2.1049 2.3316 2.5804 2.8531 3.4785 4.6524 11 12 1.1268 1.2682 1.4258 1.6010 1.7959 2.0122 2.2522 2.5182 2.8127 3.1384 3.8960 5.3503 12 13 1.1381 1.2936 1.4685 1.6651 1.8856 2.1329 2.4098 2.7196 3.0658 3.4523 4.3635 6.1528 13 14 1.1495 1.3195 1.5126 1.7317 1.9799 2.2609 2.5785 2.9372 3.3417 3.7975 4.8871 7.0757 14 15 1.1610 1.3459 1.5580 1.8009 2.0789 2.3966 2.7590 3.1722 3.6425 4.1772 5.4736 8.1371 15 16 1.1726 1.3728 1.6047 1.8730 2.1829 2.5404 2.9522 3.4259 3.9703 4.5950 6.1304 9.3576 16 17 1.1843 1.4002 1.6528 1.9479 2.2920 2.6928 3.1588 3.7000 4.3276 5.0545 6.8660 10.7613 17 18 1.1961 1.4282 1.7024 2.0258 2.4066 2.8543 3.3799 3.9960 4.7171 5.5599 7.6900 12.3755 18 19 1.2081 1.4568 1.7535 2.1068 2.5270 3.0256 3.6165 4.3157 5.1417 6.1159 8.6128 14.2318 19 20 1.2202 1.4859 1.8061 2.1911 2.6533 3.2071 3.8697 4.6610 5.6044 6.7275 9.6463 16.3665 20 25 1.2824 1.6406 2.0938 2.6658 3.3864 4.2919 5.4274 6.8485 8.6231 30 1.3478 1.8114 2.4273 35 1.4166 1.9999 2.8139 40 1.4889 2.2080 3.2620 3.9461 4.8010 3.2434 4.3219 5.5160 7.0400 5.7435 7.6123 7.6861 10.6766 10.2857 14.9745 10.0627 14.7853 21.7245 10.8347 13.2677 17.4494 29.9599 66.2118 20.4140 28.1024 52.7996 133.1755 31.4094 45.2593 93.0510 267.8635 17.0001 32.9190 25 30 35 40 Used to compute the future value of a known present amount. For example: What is the accumulated value of $3,000 invested today at 8% compounded quarterly for 5 years? Using the is 1.4859. The accumulated value is $4,457.70 ($3,000 1.4859). Table B.3 Present Value of an Annuity of 1 p = [1 - 1/(1 + i)"]/i Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 1 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 0.9346 0.9259 0.9174 0.9091 0.8929 0.8696 1 2 1.9704 1.9416 1.9135 1.8861 1.8594 1.8334 1.8080 1.7833 1.7591 1.7355 1.6901 1.6257 2 3 2.9410 2.8839 2.8286 2.7751 2.7232 2.6730 2.6243 2.5771 2.5313 2.4869 2.4018 2.2832 3 4 3.9020 3.8077 3.7171 3.6299 3.5460 3.4651 3.3872 3.3121 3.2397 3.1699 3.0373 2.8550 5 4.8534 4.7135 4.5797 4.4518 4.3295 4.2124 4.1002 3.9927 3.8897 3.7908 3.6048 3.3522 6 5.7955 5.6014 5.4172 5.2421 5.0757 4.9173 4.7665 4.6229 4.4859 4.3553 4.1114 3.7845 456 7 6.7282 6.4720 6.2303 6.0021 5.7864 5.5824 5.3893 5.2064 5.0330 4.8684 4.5638 4.1604 7 8 7.6517 7.3255 7.0197 6.7327 6.4632 6.2098 5.9713 5.7466 5.5348 5.3349 4.9676 4.4873 8 9 8.5660 8.1622 7.7861 7.4353 7.1078 6.8017 6.5152 6.2469 5.9952 5.7590 5.3282 4.7716 9 10 9.4713 8.9826 8.5302 8.1109 7.7217 7.3601 7.0236 6.7101 6.4177 6.1446 5.6502 5.0188 10 11 10.3676 9.7868 9.2526 8.7605 8.3064 7.8869 7.4987 7.1390 6.8052 6.4951 5.9377 5.2337 11 12 11.2551 10.5753 9.9540 9.3851 8.8633 8.3838 7.9427 7.5361 7.1607 6.8137 6.1944 5.4206 12 13 12.1337 11.3484 10.6350 9.9856 9.3936 8.8527 8.3577 7.9038 7.4869 7.1034 6.4235 5.5831 13 14 13.0037 12.1062 11.2961 10.5631 9.8986 9.2950 8.7455 8.2442 7.7862 7.3667 6.6282 5.7245 14 15 13.8651 12.8493 11.9379 11.1184 10.3797 9.7122 9.1079 8.5595 8.0607 7.6061 6.8109 5.8474 15 16 14.7179 13.5777 12.5611 17 15.5623 14.2919 18 16.3983 14.9920 19 17.2260 20 18.0456 25 30 35 40 22.0232 25.8077 22.3965 29.4086 24.9986 32.8347 13.1661 13.7535 15.6785 14.3238 16.3514 19.5235 11.6523 10.8378 12.1657 11.2741 10.1059 9.4466 8.8514 8.3126 7.8237 6.9740 5.9542 16 10.4773 9.7632 9.1216 8.5436 8.0216 7.1196 6.0472 17 12.0853 12.4622 14.0939 27.3555 12.6593 11.6896 13.1339 14.8775 13.5903 17.4131 15.6221 12.7834 19.6004 17.2920 15.3725 13.7648 12.4090 11.2578 10.2737 21.4872 18.6646 16.3742 14.4982 12.9477 11.6546 10.5668 23.1148 19.7928 17.1591 15.0463 13.3317 11.9246 10.7574 10.8276 10.0591 9.3719 8.7556 8.2014 7.2497 6.1280 18 11.1581 10.3356 9.6036 8.9501 8.3649 7.3658 6.1982 19 11.4699 10.5940 9.8181 9.1285 8.5136 7.4694 6.2593 20 11.6536 10.6748 9.8226 9.0770 7.8431 6.4641 25 9.4269 8.0552 6.5660 30 9.6442 9.7791 8.1755 6.6166 35 8.2438 6.6418 40 *Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2,000 per year for 10 years assuming an an years is the equivalent of $12.835 today: ($2.000 6 4177) Table B.4Future Value of an Annuity of 1 f = [(1 + i)" - 1]/i Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 2 2.0100 2.0200 2.0300 2.0400 2.0500 2.0600 2.0700 2.0800 2.0900 2.1000 2.1200 2.1500 2 3 3.0301 3.0604 3.0909 3.1216 3.1525 3.1836 3.2149 3.2464 4 4.0604 4.1216 4.1836 4.2465 4.3101 4.3746 4.4399 4.5061 5 5.1010 5.2040 5.3091 5.4163 5.5256 5.6371 5.7507 5.8666 345 3.2781 3.3100 3.3744 3.4725 3 4.5731 4.6410 4.7793 4.9934 4 5.9847 6.1051 6.3528 6.7424 5 6 6.1520 6.3081 6.4684 6.6330 6.8019 6.9753 7.1533 7.3359 7.5233 7.7156 8.1152 8.7537 6 7 7.2135 7.4343 7.6625 7.8983 8.1420 8.3938 8.6540 8.9228 9.2004 9.4872 10.0890 11.0668 7 8 8.2857 8.5830 8.8923 9.2142 9.5491 9.8975 10.2598 10.6366 11.0285 11.4359 12.2997 13.7268 8 9 9.3685 9.7546 10.1591 10.5828 11.0266 11.4913 11.9780 12.4876 13.0210 13.5795 14.7757 16.7858 9 10 10.4622 10.9497 11.4639 12.0061 12.5779 13.1808 11 11.5668 12.1687 12 12.6825 13 13.8093 14 14.9474 15 16.0969 12.8078 13.4864 13.4121 14.1920 15.0258 14.6803 15.6178 16.6268 15.9739 17.0863 18.2919 17.2934 14.2068 18.5989 20.0236 16 17.2579 18.6393 20.1569 21.8245 23.6575 17 18.4304 20.0121 21.7616 23.6975 25.8404 18 19.6147 21.4123 23.4144 25.6454 28.1324 30.9057 19 20.8109 33.7600 20 22.0190 24.2974 26.8704 25 28.2432 32.0303 36.4593 30 35 40 75.4013 13.8164 14.4866 15.1929 15.9374 14.9716 15.7836 16.6455 17.5603 18.5312 20.6546 15.9171 16.8699 17.8885 18.9771 20.1407 21.3843 24.1331 17.7130 18.8821 20.1406 21.4953 22.9534 24.5227 28.0291 34.3519 19.5986 21.0151 22.5505 24.2149 26.0192 27.9750 32.3926 40.5047 21.5786 23.2760 25.1290 27.1521 29.3609 31.7725 37.2797 47.5804 25.6725 27.8881 30.3243 33.0034 35.9497 42.7533 55.7175 28.2129 30.8402 33.7502 36.9737 40.5447 48.8837 65.0751 33.9990 37.4502 41.3013 45.5992 55.7497 75.8364 22.8406 25.1169 27.6712 30.5390 37.3790 41.4463 46.0185 51.1591 63.4397 88.2118 29.7781 33.0660 36.7856 40.9955 45.7620 51.1601 57.2750 72.0524 102.4436 41.6459 47.7271 54.8645 63.2490 73.1059 84.7009 98.3471 133.3339 212.7930 34.7849 40.5681 47.5754 56.0849 66.4388 79.0582 94.4608 113.2832 136.3075 164.4940 241.3327 434.7451 41.6603 49.9945 60.4621 73.6522 90.3203 111.4348 138.2369 172.3168 215.7108 271.0244 431.6635 881.1702 48.8864 60.4020 95.0255 120.7998 154.7620 199.6351 259.0565 337.8824 442.5926 767.0914 1,779.0903 17.5487 20.3037 10 24.3493 11 29.0017 12 13 14 15 16 17 18 19 20 25 30 35 40 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4,000 per year for 6 years assuming an accumulates to $29,343.60 ($4,000 7.3359)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Financial Accounting The Impact On Decision Makers

Authors: Gary A. Porter

8th Edition

1285880447, 978-1285880440

More Books

Students also viewed these Accounting questions

Question

How to reverse a Armstrong number by using double linked list ?

Answered: 1 week ago

Question

1. What are the marketing implications of this situation?

Answered: 1 week ago