Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Model Summary - mpg Model R R Adjusted R RMSE R Change F Change df1 df2 p 1 0.000 0.000 0.000 4.294 0.000 0 152
Model Summary - mpg | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | R | R | Adjusted R | RMSE | R Change | F Change | df1 | df2 | p | ||||||||||
1 | 0.000 | 0.000 | 0.000 | 4.294 | 0.000 | 0 | 152 | ||||||||||||
2 | 0.818 | 0.670 | 0.668 | 2.476 | 0.670 | 306.273 | 1 | 151 | <.001 | ||||||||||
3 | 0.840 | 0.705 | 0.701 | 2.348 | 0.035 | 17.825 | 1 | 150 | <.001 | ||||||||||
4 | 0.857 | 0.734 | 0.728 | 2.238 | 0.029 | 16.125 | 1 | 149 | <.001 | ||||||||||
5 | 0.865 | 0.749 | 0.742 | 2.180 | 0.015 | 9.064 | 1 | 148 | 0.003 | ||||||||||
ANOVA | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Sum of Squares | df | Mean Square | F | p | ||||||||
2 | Regression | 1877.288 | 1 | 1877.288 | 306.273 | <.001 | |||||||
Residual | 925.549 | 151 | 6.129 | ||||||||||
Total | 2802.837 | 152 | |||||||||||
3 | Regression | 1975.593 | 2 | 987.796 | 179.112 | <.001 | |||||||
Residual | 827.244 | 150 | 5.515 | ||||||||||
Total | 2802.837 | 152 | |||||||||||
4 | Regression | 2056.374 | 3 | 685.458 | 136.823 | <.001 | |||||||
Residual | 746.463 | 149 | 5.010 | ||||||||||
Total | 2802.837 | 152 | |||||||||||
5 | Regression | 2099.452 | 4 | 524.863 | 110.437 | <.001 | |||||||
Residual | 703.385 | 148 | 4.753 | ||||||||||
Total | 2802.837 | 152 | |||||||||||
Note.The intercept model is omitted, as no meaningful information can be shown. |
Coefficients | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collinearity Statistics | |||||||||||||||||
Model | Unstandardized | Standard Error | Standardized | t | p | Tolerance | VIF | ||||||||||
1 | (Intercept) | 23.856 | 0.347 | 68.718 | <.001 | ||||||||||||
2 | (Intercept) | 42.558 | 1.087 | 39.144 | <.001 | ||||||||||||
curb_wgt | -5.538 | 0.316 | -0.818 | -17.501 | <.001 | 1.000 | 1.000 | ||||||||||
3 | (Intercept) | 42.516 | 1.031 | 41.224 | <.001 | ||||||||||||
curb_wgt | -3.358 | 0.597 | -0.496 | -5.622 | <.001 | 0.253 | 3.959 | ||||||||||
fuel_cap | -0.408 | 0.097 | -0.373 | -4.222 | <.001 | 0.253 | 3.959 | ||||||||||
4 | (Intercept) | 41.242 | 1.033 | 39.927 | <.001 | ||||||||||||
curb_wgt | -2.064 | 0.654 | -0.305 | -3.154 | 0.002 | 0.191 | 5.229 | ||||||||||
fuel_cap | -0.398 | 0.092 | -0.364 | -4.320 | <.001 | 0.252 | 3.962 | ||||||||||
engine_s | -1.074 | 0.267 | -0.262 | -4.016 | <.001 | 0.421 | 2.377 | ||||||||||
5 | (Intercept) | 33.804 | 2.667 | 12.673 | <.001 | ||||||||||||
curb_wgt | -2.534 | 0.656 | -0.374 | -3.862 | <.001 | 0.180 | 5.544 | ||||||||||
fuel_cap | -0.415 | 0.090 | -0.379 | -4.619 | <.001 | 0.251 | 3.978 | ||||||||||
engine_s | -1.172 | 0.263 | -0.286 | -4.464 | <.001 | 0.414 | 2.414 | ||||||||||
length | 0.052 | 0.017 | 0.161 | 3.011 | 0.003 | 0.592 | 1.689 | ||||||||||
Note.The following covariates were considered but not included: horsepow, wheelbas, width. |
Descriptives | |||||||||
---|---|---|---|---|---|---|---|---|---|
N | Mean | SD | SE | ||||||
mpg | 153 | 23.856 | 4.294 | 0.347 | |||||
engine_s | 153 | 3.050 | 1.046 | 0.085 | |||||
horsepow | 153 | 185.072 | 56.729 | 4.586 | |||||
wheelbas | 153 | 107.410 | 7.693 | 0.622 | |||||
width | 153 | 71.086 | 3.453 | 0.279 | |||||
length | 153 | 187.092 | 13.433 | 1.086 | |||||
curb_wgt | 153 | 3.377 | 0.635 | 0.051 | |||||
fuel_cap | 153 | 17.954 | 3.925 | 0.317 | |||||
Collinearity Diagnostics | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variance Proportions | |||||||||||||||||
Model | Dimension | Eigenvalue | Condition Index | (Intercept) | engine_s | length | curb_wgt | fuel_cap | |||||||||
2 | 1 | 1.983 | 1.000 | 0.009 | 0.009 | ||||||||||||
2 | 0.017 | 10.771 | 0.991 | 0.991 | |||||||||||||
3 | 1 | 2.970 | 1.000 | 0.004 | 0.001 | 0.001 | |||||||||||
2 | 0.025 | 10.827 | 0.869 | 0.027 | 0.123 | ||||||||||||
3 | 0.005 | 23.993 | 0.127 | 0.972 | 0.876 | ||||||||||||
4 | 1 | 3.923 | 1.000 | 0.002 | 0.003 | 0.000 | 0.001 | ||||||||||
2 | 0.054 | 8.489 | 0.226 | 0.477 | 0.000 | 0.001 | |||||||||||
3 | 0.018 | 14.861 | 0.550 | 0.367 | 0.023 | 0.302 | |||||||||||
4 | 0.005 | 29.517 | 0.222 | 0.153 | 0.976 | 0.696 | |||||||||||
5 | 1 | 4.909 | 1.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | |||||||||
2 | 0.065 | 8.682 | 0.017 | 0.395 | 0.006 | 0.000 | 0.001 | ||||||||||
3 | 0.020 | 15.846 | 0.028 | 0.435 | 0.010 | 0.031 | 0.302 | ||||||||||
4 | 0.005 | 33.010 | 0.025 | 0.147 | 0.000 | 0.927 | 0.696 | ||||||||||
5 | 0.002 | 51.785 | 0.929 | 0.021 | 0.984 | 0.042 | 0.001 | ||||||||||
Note.The intercept model is omitted, as no meaningful information can be shown. |
Based on the above results answer the following questions:
- Determine the best fitted regression model.
- Write the equation of the regression model (best -fit model) and interpret all the Beta coefficients.
- Interpret the ANOVA for regression fit.
- Determine and interpret the coefficient of determination r2.
- What can we conclude about the relationship of the dependent and predictor variables?
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started