Multiple Regression in Excel
Multiple Regression
Regression Statistics Multiple 0.69225 RSquare 0.39974 Adjusted RSquare 0.31099 Standard Error 0.58948 Observations 100 ANOVA d SS MS F anyonce Regression 32221447.40479 21.3090 1.2E 10 Residual 96 33.3583 0.34740 Total 99 55.5727 Intercept GPA High SAT Letters Coefficient ndard Estot value ower 95Upper Sower os.cloper 95.0! 0.15326 0.32294 0.4746 0.63616 0.79429 0.48776 -0.79-429 0.40775 0.3765 0.11426 3.29377 0.00119 0.14954 0.60916 0.14954 0.60316 0.00123 0.0003 404636 0.00011 0.00069 0.00123 0.0006 0.00183 0.02260 0.05098 0.44495 0.65736 -0.07051 0.12380 -0.07051 0.12388 The above regression table was formed using the High school GPA, SAT scores, and Quality of letters as the X variables to predict College GPA (y variable). Let X1 High school GPA. X2 SAT scores, X3 - Quality of letters, and Y Colege GPA. Answer questions 1 to 12 with the best fitting choice, 1. Use the coefficients (highlighted) on the table and the variables, X1, X2, X3, and Y to form a multiple regression equation. Which of the following in true of that equation? (Round the coefficients to four decimal places) (6.25 points) -0.1533Y = 0.3764X1 +0.0012X2 +0.02273 Ob.Y-0.1533 +0.3764X1 +0.0012X2 +0.0227X3 c. Y 0.3764X1 +0.0012X2 +0.0227X3 -0.1533 Od: Y-0.3764X3 +0.0012X2 +0.0227X1 -0.1533 Task mework 6 / Task 1 Regression Statistics Multiple 0.63225 R Square 0.39974 Adjusted R Square 0.38099 Standard Error 0.58948 Observations 100 ANOVA SS MS F on kance Regression 322.2144 7.40479 21.3098 12E-10 Residual 96 33.3583 0.34740 Total 99 55.5727 Intercept GPA High ISAT Letters Coefficient ndard Entstot D-value Lower 95% Upper 95%ower 95.0 pper 95.0! 0.15326 0.32294 -0.4746 0.63616 -0.79429 0.48776 -0.79429 0.48776 0.37635 0.11426 3.29377 0.00139 0.14954 0.60316 0.14954 0.60316 0.00123 0.0003 4.04636 0.00011 0.00063 0.00189 0.0006 0.00183 0.02268 0.05098 0.44495 0.65736 -0.07851 012300 -0.07851 0.12300 he above regression table was formed using the High school GPA, SAT scores, and Quality of letters as the X variables to predict College GPA Y variables. Let xt - Hig chool GPA, X2 - SAT scores, X3 Quality of letters, and Y College GPA. Answer questions 1 to 12 with the best fitting choice. Use the coefficients (highlighted) on the table and the variables, X1, X2, X3, and Y to form a multiple regression equation. Which of the following is true of the quation? (Round the coefficients to four decimal places) (6.25 points) Da -0.1533Y-0.3764X1 +0.00122 0.022733 ObY-0.1533.0.3764X1 +0.0012X2.0.022733 Y 0.3764X+0.0012X2 +0.02273 -0.1533 Od. Y=0.3764X3 +0.0012x2.0.0227X1 -0.1533 2. The coefficient, -0.1533, is also known as the: (6.25 points) MacBook Pro