Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Need help finishing the code below in order for it run correctly. Areas that are needed/missing are in bold. Thanks import numpy as np import

Need help finishing the code below in order for it run correctly. Areas that are needed/missing are in bold. Thanks

import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt

#1) Generate the synthetic data using the following Python code snippet.

# Generate synthetic data

N = 100

# Zeros form a Gaussian centered at (-1, -1)

x_zeros = np.random.multivariate_normal(

mean=np.array((-1, -1)), cov=.1*np.eye(2), size=(N//2,))

y_zeros = np.zeros((N//2,))

# Ones form a Gaussian centered at (1, 1)

x_ones = np.random.multivariate_normal(

mean=np.array((1, 1)), cov=.1*np.eye(2), size=(N//2,))

y_ones = np.ones((N//2,))

x_np = np.vstack([x_zeros, x_ones])

y_np = np.concatenate([y_zeros, y_ones])

#2) Plot x_zeros and x_ones on the same graph.

#3) Generate a TensorFlow graph.

with tf.name_scope("placeholders"):

x = tf.compat.v1.placeholder(tf.float32, (N, 2))

y = tf.compat.v1.placeholder(tf.float32, (N,))

with tf.name_scope("weights"):

W = tf.Variable(tf.random.normal((2, 1)))

b = tf.Variable(tf.random.normal((1,)))

with tf.name_scope("prediction"):

y_logit = tf.squeeze(tf.matmul(x, W) + b)

# the sigmoid gives the class probability of 1

y_one_prob = tf.sigmoid(y_logit)

# Rounding P(y=1) will give the correct prediction.

y_pred = tf.round(y_one_prob)

with tf.name_scope("loss"):

# Compute the cross-entropy term for each datapoint

entropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=y_logit, labels=y)

# Sum all contributions

l = tf.reduce_sum(entropy)

with tf.name_scope("optim"):

train_op = tf.compat.v1.train.AdamOptimizer(.01).minimize(l)

with tf.name_scope("summaries"):

tf.summary.scalar("loss", l)

merged = tf.summary.merge_all()

train_writer = tf.summary.FileWriter('logistic-train', tf.get_default_graph())

#4) Train the model, get the weights, and make predictions.

#5) Plot the predicted outputs on top of the data.

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Business Process Driven Database Design With Oracle PL SQL

Authors: Rajeev Kaula

1st Edition

1795532386, 978-1795532389

More Books

Students also viewed these Databases questions