Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Needs to use the Gauss Seidel method in 3D to solve the given equation. Would prefer it written in python, but can translate if need

image text in transcribed
Needs to use the Gauss Seidel method in 3D to solve the given equation. Would prefer it written in python, but can translate if need be.
2. Poisson's Equation Given is the Poisson equation in three dimensions and Cartesian coordinates For the charge density function consider a sphere with radius R - 1. In this case the density function is given by (x, y, z) For the numerical and analytical considerations described below, you can set co 1. a) Solve the given problem by writing a code based on Gauss-Seidel iteration. For the domain use -10s S10 -10s y S10 -10s z 10 and use 100 grid points in each direction so that the total number of points in your volume is 1000000 b) After obtaining the potential as function of z, y, and z, make a plot showing z, y 0,2 0) versus r. Compare your graph with the exact analytical result for the case that we are outside of the sphere. Hints: i) The analytical result for the potential outside of the sphere is V(r)-g/ (4#01+Vo u here Vo is a constant. u) In order to find good agreement between numerical and analytical results, you need a laryer number of iterations. Good agreement can be found for 10000 iterations. 2. Poisson's Equation Given is the Poisson equation in three dimensions and Cartesian coordinates For the charge density function consider a sphere with radius R - 1. In this case the density function is given by (x, y, z) For the numerical and analytical considerations described below, you can set co 1. a) Solve the given problem by writing a code based on Gauss-Seidel iteration. For the domain use -10s S10 -10s y S10 -10s z 10 and use 100 grid points in each direction so that the total number of points in your volume is 1000000 b) After obtaining the potential as function of z, y, and z, make a plot showing z, y 0,2 0) versus r. Compare your graph with the exact analytical result for the case that we are outside of the sphere. Hints: i) The analytical result for the potential outside of the sphere is V(r)-g/ (4#01+Vo u here Vo is a constant. u) In order to find good agreement between numerical and analytical results, you need a laryer number of iterations. Good agreement can be found for 10000 iterations

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Informix Database Administrators Survival Guide

Authors: Joe Lumbley

1st Edition

0131243144, 978-0131243149

More Books

Students also viewed these Databases questions

Question

List the different categories of international employees. page 642

Answered: 1 week ago

Question

Explain the legal environments impact on labor relations. page 590

Answered: 1 week ago