note requires equal payments of $107,312 each year on October 31. (Table B.1, Table B.2, Table B.3, and Table B.4) (Use appropriate factor(s) from the tables provided.) Required: 1. Complete an amortization table for this installment note. 2. Prepare the journal entries in which Norwood records the following: (a) Accrued interest as of December 31, 2017 (the end of its annual reporting period). (b) The first annual payment on the note. Complete this question by entering your answers in the tabs below. Req 2A and 28 Req 1 Complete an amortization table for this installment note. (Round your intermediate calculations to the nearest dollar amount.) + Debit Notes Payable Ending Balance Period Ending Date Beginning Balance Debit Interest = Credit Cash Expense 10/31/2018 10/31/2019 10/31/2020 10/31/2021 10/31/2022 Total View transaction list Journal entry worksheet Record the interest accrued on the note as of December 31, 2017. Note: Enter debits before credits. Date General Journal Debit Credit Dec 31, 2017 Record entry Clear entry View general journal TABLE B.1 Present Value of 1 p = 1/(1 + iy Rate Perlods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 0.9346 0.9259 0.9174 0.9091 0.8264 0.7513 0.8929 0.9803 0.9706 0.8696 0.9612 0.9423 0.9238 0.9426 0.9151 0.9246 0.8890 0.8548 0.8219 0.7903 0.9070 0.8900 0.8734 0.8573 0.7938 0.7350 3. 0.8417 0.7972 0.7561 0.6575 0.8638 0.8396 0.8163 0.7722 0.7084 4. 0.7118 0.6355 0.9610 0.9515 0.8885 0.8626 0.8227 0.7921 0.7629 0.6830 0.6209 0.5718 0.9057 0.7835 0.7473 0.7050 0.7130 0.6806 0.6499 0.5674 0.9420 0.9327 0.9235 0.8880 0.4972 0.8375 0.7462 0.6663 0.6227 0.6302 0.5963 0.5645 0.5066 0.4523 0.4039 0.3606 0.4323 0.3759 0.3269 0.8706 0.8535 0.8131 0.7894 0.7599 0.7107 0.6768 0.6651 0.5835 0.5403 0.5002 0.4632 0.5470 0.5132 0.7307 0.6274 0.5820 0.5019 0.4665 0.9143 0.8368 0.8203 0.8043 0.7664 0.7441 0.7224 0.7026 0.6756 0.6496 0.6446 0.6139 0.5919 0.5584 0.5268 0.5439 0.5083 0.4751 0.4604 0.4241 10 0.9053 0.8963 0.2843 0.4224 0.3875 0.3555 0.3855 11 0.3220 0.2472 0.2149 0.1869 0.5847 0.4289 0.3971 0.3505 12 0.2875 0.8874 0.7885 0.7730 0.7579 0.7014 0.6246 0.5568 0.4970 0.4440 0.3186 0.2567 13 0.8787 0.6810 0.6006 0.5775 0.5303 0.4688 0.4150 0.3677 0.3262 0.2897 0.2633 0.2394 0.2176 14 0.2292 0.8700 0.1625 0.6611 0.5051 0.4423 0.3878 0.3624 0.3387 0.3166 0.2959 0.2765 0.2584 0.1842 0.1314 0.0937 0.3405 0.2992 0.2745 15 0.8613 0.8528 0.2046 0.1413 0.1229 0.1069 0.7430 0.6419 0.5553 0.4810 0.4173 0.3152 16 0.1827 0.7284 0.6232 0.5339 0.4581 0.3936 0.2919 02703 0.2519 0.1631 17 0.8444 0.8360 0.7142 0.7002 0.6050 0.5134 0.4936 0.4363 0.4155 0.3714 0.3503 0.3305 03118 0.2330 0.2311 18 0.1978 0.1799 0.1635 0.1456 0.1300 0.0929 0.5874 0.2502 0.2120 19 0.8277 0.0808 0.6864 0.5703 0.4746 0.3957 0.3769 0.2317 0.1945 20 0.1161 0.8195 0.7798 0.7419 0.7059 0.6717 0.0703 0.6730 0.5537 0.4776 0.4120 0.3554 0.3066 0.4564 0.2145 0. 1037 0.1784 0.1160 0.1486 25 0.0611 0.0304 0.6095 0.5521 0.5000 0.4529 0.3751 0.2953 0.1460 0.0923 30 0.0588 0.2314 0.3083 0.1741 0.0994 0.0676 0.0754 0.0573 0.0356 0.0221 35 0.0334 0.0151 0.1813 0.2534 0.1301 0.0490 40 0.0189 0.0075 0.2083 0.1420 0.0972 0.0668 0.0460 0.0318 0.0107 0.0037 *Used to compute the present value of a known future amount For example: How mach would you noed o invest today at 10 compounded semiannually to accumulale S5000 in 6 years rom day? Using the actos of 12 and i S% (12 semianal periods and a semiannual rake of S the facr is0.55. You woukd ed to inet $2.784 lay (SS00 x0.55 TABLE B.2 Future Value of 1 f= (1 + r Rate Perlods 2% 3% 5% 6% 7% 8% 10% 12% 15% 1.0000 1.0100 1.0000 1.0200 1.0404 1.0612 1.0000 1.0000 1.0400 1.0000 1.0500 1.1025 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.1500 1.3225 1.5209 1.7490 1.0300 1.0609 1.0927 1.1255 1.0600 1.0700 1.0800 1.0900 2 1.1000 1.0201 1.1200 1.0816 1.1236 1.1449 1.1664 1.1881 1.2100 1.2544 1.0303 1.0406 1.1249 1.1576 1.1910 1.2250 1.2597 1.2950 1.33 10 1.4049 1.5735 1.7623 1.9738 1.0824 1.1699 1.2155 1.2625 1.3108 1.4026 1.3605 1.4116 1.4641 1.0510 1.1041 1.1593 1.2167 1.2763 1.3401 1.3382 1.4693 1.5386 1.6105 1.0615 1.1262 2.0114 1.1941 1.2653 1.4185 1.5007 1.5869 1.6771 1.7716 2.3131 2.6600 1.0721 1.0829 1.0937 1.1487 1.2299 1.3159 1.4071 1.5036 1.5938 1.6058 1.7138 1.8280 1.9487 2.2107 1.1717 1.2668 1.3686 1.4775 1.7182 1.8509 1.9990 2.1589 23316 1.9926 2.1436 2.4760 2.7731 3.0590 1.1951 1.3048 1.4233 1.5513 1.6895 1.8385 1.9672 2.1719 2.3579 3.5179 10 1.1046 1.2190 1.3439 1.4802 1.6289 1.7908 2.3674 2.5937 3.1058 4.0456 11 1.1157 1.2434 1.3842 1.5395 1.7103 1.8983 2.1049 2.5804 2.8531 3.1384 3.4523 3.7975 4.1772 4.5950 3.4785 4.6524 12 1.1268 1.2682 1.4258 1.6010 1.7959 2.0122 2.2522 2.5182 2.7196 2.9372 3.1722 2.8127 3.8960 4.3635 13 5.3503 1.1381 1.2936 1.4685 1.6651 1.8856 2.1329 2.4098 3.0658 3.3417 6.1528 14 1.1495 1.3195 1.5126 1.9799 1.7317 2.2609 2.5785 4.8871 7.0757 15 1.1610 1.3459 1.5580 1.8009 2.0789 2.3966 2.7590 3.6425 5.4736 8.1371 9.3576 16 1.1726 1.3728 1.6047 1.8730 2.1829 2.5404 2.6928 2.8543 2.9522 3.4259 3.9703 6.1304 17 1.1843 1.4002 1.6528 1.9479 2.2920 3.1588 3.7000 4.3276 5.0545 68660 10.7613 18 1.1961 1.4282 1.7024 2.0258 2.4066 3.3799 3.9960 4.7171 5.5599 7.6900 12.3755 19 1.2081 1.4568 1.7535 2.1068 2.5270 3.0256 3.6165 4.3157 4.6610 6.8485 10.0627 14.7853 5.1417 6.1159 8.6128 14.2318 20 1.2202 1.4859 1,6406 1.8061 2.0938 2.1911 2.6533 3.2071 3.8697 5.6044 8.6231 13.2677 20.4140 6.7275 10.8347 9.6463 16.3665 25 1.2824 2.6658 3.3864 4.2919 5.4274 17.0001 32.9190 30 1.3478 1.8114 2.4273 3.2434 5.7435 4.3219 7.6123 17.4494 29.9599 66.2118 35 1.9999 1.4166 3.9461 2.8139 5.5160 7.6861 10.6766 28.1024 52.7996 133.1755 40 1.4889 2.2080 3.2620 4.8010 7.0400 10.2857 14.9745 21.7245 31.4094 45.2593 93.0510 267.8635 Used to compute the future value of a known present amount. For example: What is the accumulated value of S3,000 invested today at 8% compounded quarterly for 5 years? Using the factors of = 20 and i 2% (20 quarterty periods and a quarterly interest rate of 24), the factor is 1.4R59. The accumulated value is S4,457.70 (S,000 x 14859 TABLE B.3! /i (1 + i)" Present Value of an Annuity of 1 Rate Perlods 2% 7% 8% 9% 10% 12% 15% 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 1.8334 2.6730 3.4651 0.8696 0.9346 0.9259 0.9174 0.9091 0.8929 1.9704 1.9416 1.9135 2.8286 1,8861 1.8594 1.8080 2.6243 1.7355 1.7833 1.7591 1.6901 1.6257 2.9410 2.8839 3.8077 2.7751 2.7232 2.5313 2.4869 2.5771 2.4018 3.0373 2.2832 2.8550 3.3522 3.7845 4.1604 4.4873 3.9020 3.7171 3.6299 3.5460 3.3872 3.3121 3.2397 3.1699 4.8534 4.7135 5.6014 4.5797 4.4518 4.3295 4.2124 3.9927 4.6229 4.1002 3.8897 3.7908 3.6048 5.7955 5.4172 5.0757 5.2421 4.9173 4,7665 4.4859 4.3553 4.1114 6.2303 5.3893 7. 6.7282 6.4720 6.0021 5.7864 5.5824 5.2064 5.0330 5.5348 4.8684 4.5638 7.3255 6.7327 6.4632 7.6517 7.0197 6.2098 5.9713 5.7466 5.3349 4.9676 8.5660 7.7861 8.5302 7.1078 6.2469 8.1622 7.4353 6.8017 6.5152 5.9952 5.7590 5.3282 4.7716 7.3601 7.0236 5.0188 10 9.4713 8.9826 8.1109 7.7217 6.7101 6.4177 6.1446 5.6502 8.7605 9.3851 7.8869 7.4987 7.1390 11 10.3676 9.7868 9.2526 8.3064 6.8052 6.4951 5.9377 5.2337 7.9427 8.3838 11.2551 10.5753 9.9540 8.8633 7.5361 7.1607 6.8137 6.1944 5.4206 12 9.9856 10.5631 9.3936 9.8986 8.8527 8.3577 7.9038 6.4235 5.5831 5.7245 10.6350 7.4869 7.1034 13 12.1337 11.3484 11.2961 11.9379 9.2950 8.7455 8.2442 7.7862 7.3667 12.1062 6.6282 14 13.0037 9.1079 9.4466 9.7632 6.8109 11.1184 10.3797 9.7122 8.5595 8.0607 7.6061 5.8474 12.8493 15 13.8651 10.8378 7.8237 5.9542 11.6523 12.1657 12.6593 10.1059 8.8514 8.3126 6.9740 13.5777 12.5611 16 14.7179 13.1661 13.7535 11.2741 10.4773 9.1216 8.5436 8.0216 7.1196 6.0472 15.5623 16.3983 17.2260 14.2919 17 11.6896 10.0591 9.3719 7.2497 6.1280 10.8276 8.7556 8.2014 14.9920 18 6.1982 6.2593 11.1581 10.3356 9.6036 8.9501 8.3649 7.3658 14.3238 13.1339 12.0853 19 15.6785 9.1285 7.4694 13.5903 11.4699 10.5940 9.8181 8.5136 16.3514 12.4622 20 18.0456 14.8775 11.6536 10.6748 9.8226 9.0770 7.8431 6.4641 14.0939 12.7834 22.0232 17.4131 15.6221 25 19.5235 9.4269 6.5660 11.2578 10.2737 8.0552 15.3725 13.7648 12.4090 19.6004 17.2920 30 25.8077 22.3965 6.6166 14.4982 15.0463 10.5668 9.6442 8.1755 12.9477 11.6546 24.9986 18.6646 16.3742 21.4872 35 29.4086 8.2438 6.6418 11.9246 10.7574 9.7791 17.1591 13.3317 19.7928 40 32.8347 27.3555 23.1148 Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2000 per year for 10 years assuming an annual interest rate of 9%. For (n= 10, 9%), the PV factor is 6.417.52.000 per year for 10 years is the equivalent of S12835 day (52000 x 64177) f=[(1 + i)" 1yi TABLE B.4 Future Value of an Annuity of 1 Rate Perlods 1% 2% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1.0000 1.0000 1.0000 2.0300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.0100 2.0200 2.0400 2.0500 2.0600 2.0700 2.0800 2.0900 2.1000 2.1200 2.1500 3.4725 4.9934 3. 3.0301 3.0604 4,1216 3.0909 4.1836 3.1216 3.1525 4.3101 5.5256 3.1836 4.3746 5.6371 6.9753 8.3938 3.2149 3.2464 3.2781 4.5731 3.3100 3.3744 4 4.0604 4.2465 4.4399 4.5061 4.6410 4.7793 5. 5.1010 5.2040 5.3091 5.4163 6.6330 78983 5.7507 7.1533 8.6540 5.8666 7.3359 8.9228 5.9847 6.1051 6.3528 8.1152 10.0890 6.7424 6. 6.1520 7.2135 6.3081 6.4684 6.8019 7.5233 7.7156 9.4872 8.7537 11.0668 7.4343 7.6625 8.1420 9.5491 11.0266 12.5779 9.2004 8.2857 8.5830 8.8923 10.1591 9.2142 10.5828 9.8975 11.4913 13.1808 14.9716 16.8699 10.2598 10.6366 11.0285 11.4359 12.2997 13.7268 9. 9.3685 9.7546 11.9780 12.4876 13.0210 13.5795 15.9374 18.5312 14.7757 16.7858 10 10.4622 10.9497 11.4639 12.0061 13.8164 14.4866 15.1929 17.5487 20.6546 24.1331 28.0291 32.3926 20.3037 11 11.5668 12.6825 12.1687 12.8078 13.4864 14.2068 15.7836 16.6455 17.5603 24.3493 29.0017 34.3519 12 13.4121 14.1920 15.0258 15.9171 17.8885 18.9771 21.4953 24.2149 27.1521 30.3243 33.7502 20.1407 22.9534 26.0192 29.3609 21.3843 24.5227 13 13.8093 14.6803 15.6178 17.0863 16.6268 17.7130 19.5986 18.8821 21.0151 23.2760 20.1406 14 14.9474 15.9739 18.2919 22.5505 27.9750 40.5047 15 16.0969 17.2934 18.5989 20.0236 21.5786 25.1290 31.7725 37.2797 47.5804 55.7175 16 17.2579 18.6393 20.0121 20.1569 21.8245 23.6575 25.6725 27.8881 33.0034 36.9737 35.9497 42.7533 17 18.4304 21.7616 23.6975 25.8404 28.2129 30.9057 30.8402 40.5447 48.8837 65.0751 18 19.6147 20.8109 22.0190 28.2432 34.7849 21.4123 23.4144 25.6454 28.1324 33.9990 37.4502 41.3013 45.5992 55.7497 75.8364 19 20 22.8406 25.1169 27.6712 30.5390 33.7600 37.3790 41.4463 46.0185 51.1601 51.1591 63.4397 88.2118 102.4436 24.2974 26.8704 36.4593 29.7781 33.0660 36.7856 40.9955 45.7620 57.2750 72.0524 25 32.0303 47.7271 41.6459 54.8645 63.2490 94.4608 138.2369 73.1059 98.3471 84.7009 133.3339 212.7930 30 40.5681 49.9945 47.5754 56.0849 73.6522 79.0582 66.4388 113.2832 136.3075 215.7108 271.0244 164.4940 241.3327 434.7451 35 41.6603 60.4621 75.4013 90.3203 111.4348 172.3168 431.6635 881.1702 40 48.8864 60.4020 120.7998 154.7620 95.0255 199.6351 259.0565 337.8824 442.5926 767.0914 1,779.0903 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of S4,000 per year for 6 years asseming an annual interest rate of 8%. For (n 6, i 8%), the FV factor is 7.3359. S4000 per year for 6 years accumelates to S29 343.60 (54,000 x 7.3359). note requires equal payments of $107,312 each year on October 31. (Table B.1, Table B.2, Table B.3, and Table B.4) (Use appropriate factor(s) from the tables provided.) Required: 1. Complete an amortization table for this installment note. 2. Prepare the journal entries in which Norwood records the following: (a) Accrued interest as of December 31, 2017 (the end of its annual reporting period). (b) The first annual payment on the note. Complete this question by entering your answers in the tabs below. Req 2A and 28 Req 1 Complete an amortization table for this installment note. (Round your intermediate calculations to the nearest dollar amount.) + Debit Notes Payable Ending Balance Period Ending Date Beginning Balance Debit Interest = Credit Cash Expense 10/31/2018 10/31/2019 10/31/2020 10/31/2021 10/31/2022 Total View transaction list Journal entry worksheet Record the interest accrued on the note as of December 31, 2017. Note: Enter debits before credits. Date General Journal Debit Credit Dec 31, 2017 Record entry Clear entry View general journal TABLE B.1 Present Value of 1 p = 1/(1 + iy Rate Perlods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 0.9346 0.9259 0.9174 0.9091 0.8264 0.7513 0.8929 0.9803 0.9706 0.8696 0.9612 0.9423 0.9238 0.9426 0.9151 0.9246 0.8890 0.8548 0.8219 0.7903 0.9070 0.8900 0.8734 0.8573 0.7938 0.7350 3. 0.8417 0.7972 0.7561 0.6575 0.8638 0.8396 0.8163 0.7722 0.7084 4. 0.7118 0.6355 0.9610 0.9515 0.8885 0.8626 0.8227 0.7921 0.7629 0.6830 0.6209 0.5718 0.9057 0.7835 0.7473 0.7050 0.7130 0.6806 0.6499 0.5674 0.9420 0.9327 0.9235 0.8880 0.4972 0.8375 0.7462 0.6663 0.6227 0.6302 0.5963 0.5645 0.5066 0.4523 0.4039 0.3606 0.4323 0.3759 0.3269 0.8706 0.8535 0.8131 0.7894 0.7599 0.7107 0.6768 0.6651 0.5835 0.5403 0.5002 0.4632 0.5470 0.5132 0.7307 0.6274 0.5820 0.5019 0.4665 0.9143 0.8368 0.8203 0.8043 0.7664 0.7441 0.7224 0.7026 0.6756 0.6496 0.6446 0.6139 0.5919 0.5584 0.5268 0.5439 0.5083 0.4751 0.4604 0.4241 10 0.9053 0.8963 0.2843 0.4224 0.3875 0.3555 0.3855 11 0.3220 0.2472 0.2149 0.1869 0.5847 0.4289 0.3971 0.3505 12 0.2875 0.8874 0.7885 0.7730 0.7579 0.7014 0.6246 0.5568 0.4970 0.4440 0.3186 0.2567 13 0.8787 0.6810 0.6006 0.5775 0.5303 0.4688 0.4150 0.3677 0.3262 0.2897 0.2633 0.2394 0.2176 14 0.2292 0.8700 0.1625 0.6611 0.5051 0.4423 0.3878 0.3624 0.3387 0.3166 0.2959 0.2765 0.2584 0.1842 0.1314 0.0937 0.3405 0.2992 0.2745 15 0.8613 0.8528 0.2046 0.1413 0.1229 0.1069 0.7430 0.6419 0.5553 0.4810 0.4173 0.3152 16 0.1827 0.7284 0.6232 0.5339 0.4581 0.3936 0.2919 02703 0.2519 0.1631 17 0.8444 0.8360 0.7142 0.7002 0.6050 0.5134 0.4936 0.4363 0.4155 0.3714 0.3503 0.3305 03118 0.2330 0.2311 18 0.1978 0.1799 0.1635 0.1456 0.1300 0.0929 0.5874 0.2502 0.2120 19 0.8277 0.0808 0.6864 0.5703 0.4746 0.3957 0.3769 0.2317 0.1945 20 0.1161 0.8195 0.7798 0.7419 0.7059 0.6717 0.0703 0.6730 0.5537 0.4776 0.4120 0.3554 0.3066 0.4564 0.2145 0. 1037 0.1784 0.1160 0.1486 25 0.0611 0.0304 0.6095 0.5521 0.5000 0.4529 0.3751 0.2953 0.1460 0.0923 30 0.0588 0.2314 0.3083 0.1741 0.0994 0.0676 0.0754 0.0573 0.0356 0.0221 35 0.0334 0.0151 0.1813 0.2534 0.1301 0.0490 40 0.0189 0.0075 0.2083 0.1420 0.0972 0.0668 0.0460 0.0318 0.0107 0.0037 *Used to compute the present value of a known future amount For example: How mach would you noed o invest today at 10 compounded semiannually to accumulale S5000 in 6 years rom day? Using the actos of 12 and i S% (12 semianal periods and a semiannual rake of S the facr is0.55. You woukd ed to inet $2.784 lay (SS00 x0.55 TABLE B.2 Future Value of 1 f= (1 + r Rate Perlods 2% 3% 5% 6% 7% 8% 10% 12% 15% 1.0000 1.0100 1.0000 1.0200 1.0404 1.0612 1.0000 1.0000 1.0400 1.0000 1.0500 1.1025 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.1500 1.3225 1.5209 1.7490 1.0300 1.0609 1.0927 1.1255 1.0600 1.0700 1.0800 1.0900 2 1.1000 1.0201 1.1200 1.0816 1.1236 1.1449 1.1664 1.1881 1.2100 1.2544 1.0303 1.0406 1.1249 1.1576 1.1910 1.2250 1.2597 1.2950 1.33 10 1.4049 1.5735 1.7623 1.9738 1.0824 1.1699 1.2155 1.2625 1.3108 1.4026 1.3605 1.4116 1.4641 1.0510 1.1041 1.1593 1.2167 1.2763 1.3401 1.3382 1.4693 1.5386 1.6105 1.0615 1.1262 2.0114 1.1941 1.2653 1.4185 1.5007 1.5869 1.6771 1.7716 2.3131 2.6600 1.0721 1.0829 1.0937 1.1487 1.2299 1.3159 1.4071 1.5036 1.5938 1.6058 1.7138 1.8280 1.9487 2.2107 1.1717 1.2668 1.3686 1.4775 1.7182 1.8509 1.9990 2.1589 23316 1.9926 2.1436 2.4760 2.7731 3.0590 1.1951 1.3048 1.4233 1.5513 1.6895 1.8385 1.9672 2.1719 2.3579 3.5179 10 1.1046 1.2190 1.3439 1.4802 1.6289 1.7908 2.3674 2.5937 3.1058 4.0456 11 1.1157 1.2434 1.3842 1.5395 1.7103 1.8983 2.1049 2.5804 2.8531 3.1384 3.4523 3.7975 4.1772 4.5950 3.4785 4.6524 12 1.1268 1.2682 1.4258 1.6010 1.7959 2.0122 2.2522 2.5182 2.7196 2.9372 3.1722 2.8127 3.8960 4.3635 13 5.3503 1.1381 1.2936 1.4685 1.6651 1.8856 2.1329 2.4098 3.0658 3.3417 6.1528 14 1.1495 1.3195 1.5126 1.9799 1.7317 2.2609 2.5785 4.8871 7.0757 15 1.1610 1.3459 1.5580 1.8009 2.0789 2.3966 2.7590 3.6425 5.4736 8.1371 9.3576 16 1.1726 1.3728 1.6047 1.8730 2.1829 2.5404 2.6928 2.8543 2.9522 3.4259 3.9703 6.1304 17 1.1843 1.4002 1.6528 1.9479 2.2920 3.1588 3.7000 4.3276 5.0545 68660 10.7613 18 1.1961 1.4282 1.7024 2.0258 2.4066 3.3799 3.9960 4.7171 5.5599 7.6900 12.3755 19 1.2081 1.4568 1.7535 2.1068 2.5270 3.0256 3.6165 4.3157 4.6610 6.8485 10.0627 14.7853 5.1417 6.1159 8.6128 14.2318 20 1.2202 1.4859 1,6406 1.8061 2.0938 2.1911 2.6533 3.2071 3.8697 5.6044 8.6231 13.2677 20.4140 6.7275 10.8347 9.6463 16.3665 25 1.2824 2.6658 3.3864 4.2919 5.4274 17.0001 32.9190 30 1.3478 1.8114 2.4273 3.2434 5.7435 4.3219 7.6123 17.4494 29.9599 66.2118 35 1.9999 1.4166 3.9461 2.8139 5.5160 7.6861 10.6766 28.1024 52.7996 133.1755 40 1.4889 2.2080 3.2620 4.8010 7.0400 10.2857 14.9745 21.7245 31.4094 45.2593 93.0510 267.8635 Used to compute the future value of a known present amount. For example: What is the accumulated value of S3,000 invested today at 8% compounded quarterly for 5 years? Using the factors of = 20 and i 2% (20 quarterty periods and a quarterly interest rate of 24), the factor is 1.4R59. The accumulated value is S4,457.70 (S,000 x 14859 TABLE B.3! /i (1 + i)" Present Value of an Annuity of 1 Rate Perlods 2% 7% 8% 9% 10% 12% 15% 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 1.8334 2.6730 3.4651 0.8696 0.9346 0.9259 0.9174 0.9091 0.8929 1.9704 1.9416 1.9135 2.8286 1,8861 1.8594 1.8080 2.6243 1.7355 1.7833 1.7591 1.6901 1.6257 2.9410 2.8839 3.8077 2.7751 2.7232 2.5313 2.4869 2.5771 2.4018 3.0373 2.2832 2.8550 3.3522 3.7845 4.1604 4.4873 3.9020 3.7171 3.6299 3.5460 3.3872 3.3121 3.2397 3.1699 4.8534 4.7135 5.6014 4.5797 4.4518 4.3295 4.2124 3.9927 4.6229 4.1002 3.8897 3.7908 3.6048 5.7955 5.4172 5.0757 5.2421 4.9173 4,7665 4.4859 4.3553 4.1114 6.2303 5.3893 7. 6.7282 6.4720 6.0021 5.7864 5.5824 5.2064 5.0330 5.5348 4.8684 4.5638 7.3255 6.7327 6.4632 7.6517 7.0197 6.2098 5.9713 5.7466 5.3349 4.9676 8.5660 7.7861 8.5302 7.1078 6.2469 8.1622 7.4353 6.8017 6.5152 5.9952 5.7590 5.3282 4.7716 7.3601 7.0236 5.0188 10 9.4713 8.9826 8.1109 7.7217 6.7101 6.4177 6.1446 5.6502 8.7605 9.3851 7.8869 7.4987 7.1390 11 10.3676 9.7868 9.2526 8.3064 6.8052 6.4951 5.9377 5.2337 7.9427 8.3838 11.2551 10.5753 9.9540 8.8633 7.5361 7.1607 6.8137 6.1944 5.4206 12 9.9856 10.5631 9.3936 9.8986 8.8527 8.3577 7.9038 6.4235 5.5831 5.7245 10.6350 7.4869 7.1034 13 12.1337 11.3484 11.2961 11.9379 9.2950 8.7455 8.2442 7.7862 7.3667 12.1062 6.6282 14 13.0037 9.1079 9.4466 9.7632 6.8109 11.1184 10.3797 9.7122 8.5595 8.0607 7.6061 5.8474 12.8493 15 13.8651 10.8378 7.8237 5.9542 11.6523 12.1657 12.6593 10.1059 8.8514 8.3126 6.9740 13.5777 12.5611 16 14.7179 13.1661 13.7535 11.2741 10.4773 9.1216 8.5436 8.0216 7.1196 6.0472 15.5623 16.3983 17.2260 14.2919 17 11.6896 10.0591 9.3719 7.2497 6.1280 10.8276 8.7556 8.2014 14.9920 18 6.1982 6.2593 11.1581 10.3356 9.6036 8.9501 8.3649 7.3658 14.3238 13.1339 12.0853 19 15.6785 9.1285 7.4694 13.5903 11.4699 10.5940 9.8181 8.5136 16.3514 12.4622 20 18.0456 14.8775 11.6536 10.6748 9.8226 9.0770 7.8431 6.4641 14.0939 12.7834 22.0232 17.4131 15.6221 25 19.5235 9.4269 6.5660 11.2578 10.2737 8.0552 15.3725 13.7648 12.4090 19.6004 17.2920 30 25.8077 22.3965 6.6166 14.4982 15.0463 10.5668 9.6442 8.1755 12.9477 11.6546 24.9986 18.6646 16.3742 21.4872 35 29.4086 8.2438 6.6418 11.9246 10.7574 9.7791 17.1591 13.3317 19.7928 40 32.8347 27.3555 23.1148 Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2000 per year for 10 years assuming an annual interest rate of 9%. For (n= 10, 9%), the PV factor is 6.417.52.000 per year for 10 years is the equivalent of S12835 day (52000 x 64177) f=[(1 + i)" 1yi TABLE B.4 Future Value of an Annuity of 1 Rate Perlods 1% 2% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1.0000 1.0000 1.0000 2.0300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.0100 2.0200 2.0400 2.0500 2.0600 2.0700 2.0800 2.0900 2.1000 2.1200 2.1500 3.4725 4.9934 3. 3.0301 3.0604 4,1216 3.0909 4.1836 3.1216 3.1525 4.3101 5.5256 3.1836 4.3746 5.6371 6.9753 8.3938 3.2149 3.2464 3.2781 4.5731 3.3100 3.3744 4 4.0604 4.2465 4.4399 4.5061 4.6410 4.7793 5. 5.1010 5.2040 5.3091 5.4163 6.6330 78983 5.7507 7.1533 8.6540 5.8666 7.3359 8.9228 5.9847 6.1051 6.3528 8.1152 10.0890 6.7424 6. 6.1520 7.2135 6.3081 6.4684 6.8019 7.5233 7.7156 9.4872 8.7537 11.0668 7.4343 7.6625 8.1420 9.5491 11.0266 12.5779 9.2004 8.2857 8.5830 8.8923 10.1591 9.2142 10.5828 9.8975 11.4913 13.1808 14.9716 16.8699 10.2598 10.6366 11.0285 11.4359 12.2997 13.7268 9. 9.3685 9.7546 11.9780 12.4876 13.0210 13.5795 15.9374 18.5312 14.7757 16.7858 10 10.4622 10.9497 11.4639 12.0061 13.8164 14.4866 15.1929 17.5487 20.6546 24.1331 28.0291 32.3926 20.3037 11 11.5668 12.6825 12.1687 12.8078 13.4864 14.2068 15.7836 16.6455 17.5603 24.3493 29.0017 34.3519 12 13.4121 14.1920 15.0258 15.9171 17.8885 18.9771 21.4953 24.2149 27.1521 30.3243 33.7502 20.1407 22.9534 26.0192 29.3609 21.3843 24.5227 13 13.8093 14.6803 15.6178 17.0863 16.6268 17.7130 19.5986 18.8821 21.0151 23.2760 20.1406 14 14.9474 15.9739 18.2919 22.5505 27.9750 40.5047 15 16.0969 17.2934 18.5989 20.0236 21.5786 25.1290 31.7725 37.2797 47.5804 55.7175 16 17.2579 18.6393 20.0121 20.1569 21.8245 23.6575 25.6725 27.8881 33.0034 36.9737 35.9497 42.7533 17 18.4304 21.7616 23.6975 25.8404 28.2129 30.9057 30.8402 40.5447 48.8837 65.0751 18 19.6147 20.8109 22.0190 28.2432 34.7849 21.4123 23.4144 25.6454 28.1324 33.9990 37.4502 41.3013 45.5992 55.7497 75.8364 19 20 22.8406 25.1169 27.6712 30.5390 33.7600 37.3790 41.4463 46.0185 51.1601 51.1591 63.4397 88.2118 102.4436 24.2974 26.8704 36.4593 29.7781 33.0660 36.7856 40.9955 45.7620 57.2750 72.0524 25 32.0303 47.7271 41.6459 54.8645 63.2490 94.4608 138.2369 73.1059 98.3471 84.7009 133.3339 212.7930 30 40.5681 49.9945 47.5754 56.0849 73.6522 79.0582 66.4388 113.2832 136.3075 215.7108 271.0244 164.4940 241.3327 434.7451 35 41.6603 60.4621 75.4013 90.3203 111.4348 172.3168 431.6635 881.1702 40 48.8864 60.4020 120.7998 154.7620 95.0255 199.6351 259.0565 337.8824 442.5926 767.0914 1,779.0903 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of S4,000 per year for 6 years asseming an annual interest rate of 8%. For (n 6, i 8%), the FV factor is 7.3359. S4000 per year for 6 years accumelates to S29 343.60 (54,000 x 7.3359)