Question
O: This function needs to be completed. Suggested steps: 1. Create list of normal patients (hf_events.csv only contains information about heart
O: This function needs to be completed.
Suggested steps:
1. Create list of normal patients (hf_events.csv only contains information about heart failure patients).
2. Split events into two groups based on whether the patient has heart failure or not.
3. Calculate index vid for each patient.
IMPORTANT:
`indx_vid` should be a pd dataframe with header `['pid', 'indx_vid']`.
'''
hf_patients = events.loc[events.pid.isin(hf)]
norm_patients = events.loc[~events.pid.isin(hf)]
norm_patients= norm_patients.sort_values(by=['pid', 'vid'])
vidcount_norm = (norm_patients.groupby("pid")["vid"].max())
print(len(vidcount_norm))
vidcount_hf = (hf_patients.groupby("pid")["vid"].min())
print(len(vidcount_hf))
#vidcount_hf[50285]=3
#print(vidcount_hf[50285])
#print(vidcount_hf[98085]) #=5
#print(vidcount_norm[20853])#=1
#print(vidcount_norm[47877]) #=1
f1 = pd.DataFrame({'pid':vidcount_norm.index, 'indx_vid':vidcount_norm.values})
f2 = pd.DataFrame({'pid':vidcount_hf.index, 'indx_vid':vidcount_hf.values})
f4 = dict(list(zip(f2.pid, f2.indx_vid)))
#print(f4)
f3 = pd.concat([f1, f2], axis=0)
f3 = f3.sort_values(by=['pid'])
#f4 = pd.DataFrame({'pid':f3.index, 'indx_vid':f3.values})
indx_vid = f3
print(indx_vid.shape)
print(f3[f3.pid == 78])
print(f3[f3.pid == 1230])
#print(indx_vid)
#indx_vid1 = dict(list(zip(indx_vid_df.pid, indx_vid_df.indx_vid)))
#print(indx_vid1)
# your code here
#raise NotImplementedError
return indx_vid
Step by Step Solution
There are 3 Steps involved in it
Step: 1
from collections import defaultdict import pandas as pd def cal...Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started