of public and prlvate Reys sing p23 and q 3 Ilustrate RSA algorithm to generate a pair of public hiu Select e such that it is higher than p or q value. Use Extended Give the public key pair (e, n) and private key pair (d, n). 1. Illustrate RSA algorithm to generate a pair Euclid algorithm to determine d 2. The ASCII character codes for different characters are as given below ASCII Code: Character to Binary m 0110 1101 0 0011 0000 0011 0001 2 0011 0010 3 0011 0011 0011 010o 0011 0101 0100 1111 P 0101 0000 0101 0001 n 0310 110 0110 1111 R 0101 0010 s 0101 0011 T 0101 0100 U 0101 0101 V 0101 0110 W 0101 0111 x 0101 1000 Y 0101 1001 z 0101 1010 a 0110 0001 b 0110 0010 0110 0011 0110 0100 0110 0101 t 0110 0110 0110 0111 b 0110 1000 p 0111 0000 0111 0001 111 0010 0111 0011 0111 0100 0111 0101 V 0111 011O W 0111 0111 0111 1000 0111 1001 0111 1010 0010 1110 0010 0111 0011 0110 7 0011 0111 0011 1000 9 0011 1001 A 0100 0001 B 0100 0010 ? 01000011 D 0100 0100 E 0100 0101 P 0100 0110 0100 0111 ? 01001000 0100 1001 0100 1010 0100 1011 0100 1100o 0011 1010 0011 1011 00100001 0010 1100 0010 0010 0010 1000 0010 1001 upace 0010 0000 0110 100 0110 1010 0110 1011 0110 1100 100 1101 k 0100 1110 Use binary to decimal conversion to get m value to be used for a message. Encrypt the word "God using the keys generated in problem 1. Encrypt each plain text separately For example, letter I has binary code, 0100 1001 which is equivalent to 73, then m 73 of public and prlvate Reys sing p23 and q 3 Ilustrate RSA algorithm to generate a pair of public hiu Select e such that it is higher than p or q value. Use Extended Give the public key pair (e, n) and private key pair (d, n). 1. Illustrate RSA algorithm to generate a pair Euclid algorithm to determine d 2. The ASCII character codes for different characters are as given below ASCII Code: Character to Binary m 0110 1101 0 0011 0000 0011 0001 2 0011 0010 3 0011 0011 0011 010o 0011 0101 0100 1111 P 0101 0000 0101 0001 n 0310 110 0110 1111 R 0101 0010 s 0101 0011 T 0101 0100 U 0101 0101 V 0101 0110 W 0101 0111 x 0101 1000 Y 0101 1001 z 0101 1010 a 0110 0001 b 0110 0010 0110 0011 0110 0100 0110 0101 t 0110 0110 0110 0111 b 0110 1000 p 0111 0000 0111 0001 111 0010 0111 0011 0111 0100 0111 0101 V 0111 011O W 0111 0111 0111 1000 0111 1001 0111 1010 0010 1110 0010 0111 0011 0110 7 0011 0111 0011 1000 9 0011 1001 A 0100 0001 B 0100 0010 ? 01000011 D 0100 0100 E 0100 0101 P 0100 0110 0100 0111 ? 01001000 0100 1001 0100 1010 0100 1011 0100 1100o 0011 1010 0011 1011 00100001 0010 1100 0010 0010 0010 1000 0010 1001 upace 0010 0000 0110 100 0110 1010 0110 1011 0110 1100 100 1101 k 0100 1110 Use binary to decimal conversion to get m value to be used for a message. Encrypt the word "God using the keys generated in problem 1. Encrypt each plain text separately For example, letter I has binary code, 0100 1001 which is equivalent to 73, then m 73