Question
Part 1: RKO Movie Earnings and Costs Dataset: rko_film_19301941.dat Source: J. Sedgwick (1994). Richard B. Jewell's RKO Film Grosses, 1929-1951:The C.J. Trevlin Ledger: A Comment,
Part 1: RKO Movie Earnings and Costs
Dataset: rko_film_19301941.dat
Source: J. Sedgwick (1994). "Richard B. Jewell's RKO Film Grosses, 1929-1951:The C.J. Trevlin Ledger: A Comment", Historical Journal of Film, Radio &Television, Vol.14, Issue 1, p. 51
Description: Costs and Earnings of 155 RKO movies from 1930-1941.
Variables/Columns
Film 1-25
Re-release dummy 33 /* 1=Re-release, 0 if not
Production costs ($1000s) 36-41
Domestic Revenue ($1000s) 44-49
Foreign Revenue ($1000s) 53-57
Total Revenue ($1000s) 61-65
Profits ($1000s) 68-73
Distribution Cost($1000s) 76-81
Dist Cost/Revenue 83-88
Dist Cost/Prod Cost 91-97
Year 100-104
100*Profit/(Prod+dist cost) 106-111
A study reported various costs and revenues for movies released by RKO during the years 1930-1941. Fit linear regression models relating Total Revenue to Total Cost (Distribution + Production) by completing the following parts.
p.1.a. Fit a simple linear regression model based on ordinary least squares. Give the fitted equation, estimated standard errors, and the estimate ofs
p.1.b. Plot the residuals, absolute residuals, and squared residuals versus the fitted values
p.1.c. Obtain the correlations between the absolute residuals and fitted values and squared residuals and fitted values
p.1.d. Obtain the Weighted Least Squares estimatorbWin matrix form (iteratively) based on the model that the standard deviation ofe is proportional to the mean. Give the point estimates and standard errors of the regression coefficients.
p.1.e. Using theglsfunction in thenlmepackage to obtain the generalized least squares estimates using the power relation:: Give the estimates of a, d
p.1.f. Compare the slope estimate and their standard error for Ordinary and Generalized Least Squares.
R Program to Read Data
rko.dat <- read.csv("https://www.stat.ufl.edu/~winner/data/rko_film_19301941.csv") attach(rko.dat); names(rko.dat)
totCost <- distCost+prodCost
EXAMPLE
R code
nflcomb <- read.csv("http://www.stat.ufl.edu/~winner/sta4210/mydata/nfl_combine.csv", header=TRUE) attach(nflcomb); names(nflcomb)
#### Matrix form (using lm for |e|,y-hat regressions) ###########
n <- length(Weight) X0 <- rep(1,n) X <- as.matrix(cbind(X0,Height,ArmLng,HandLng)) Y <- as.matrix(Weight) p <- ncol(X)
#### Fit original regression, and regress functions of |e| on Y-hat
b.ols <- solve(t(X) %*% X) %*% t(X) %*% Y # b=(X'X)^(-1)X'Y mse.o <- (t(Y-X%*%b.ols) %*% (Y-X%*%b.ols))/(n-p) # MSE=(Y-Xb)"(Y-Xb)/(n-p) s2.b.ols <- mse.o[1,1]*solve(t(X) %*% X) # s2{b}=MSE*(X'X)^(-1) s.b.ols <- sqrt(diag(s2.b.ols)) # s{b}=sqrt(diag(b}} t.b.ols <- b.ols/s.b.ols # t=b/s{b} p.b.ols <- 2*(1-pt(abs(t.b.ols), n-p)) # P-value
ols.out <- cbind(b.ols, s.b.ols, t.b.ols, p.b.ols) colnames(ols.out) <- c("b_ols", "Std. Error", "t*", "P(>|t*|)") rownames(ols.out) <- c("Intercept", "Height", "Arm Length", "Hand Length")
#### Plot 1) |e| vs Y-hat 2) e^2 vs Y-hat 3) sqrt(|e|) vs Y-hat yhat.ols <- X %*% b.ols e.ols <- Y - yhat.ols
par(mfrow=c(1,3)) plot(abs(e.ols) ~ yhat.ols, pch=16) abline(lm(abs(e.ols) ~ yhat.ols)) plot(e.ols^2 ~ yhat.ols, pch=16) abline(lm(e.ols^2 ~ yhat.ols)) plot(sqrt(abs(e.ols)) ~ yhat.ols, pch=16) abline(lm(sqrt(abs(e.ols)) ~ yhat.ols))
cor(abs(e.ols) , yhat.ols) cor(e.ols^2 , yhat.ols) cor(sqrt(abs(e.ols)) , yhat.ols) # Highest correlation for sqrt(|e|) with Y-hat
# Fit regression of sqrt(|e|) on Y-hat e.reg.ols <- lm(sqrt(abs(e.ols)) ~ yhat.ols) summary(e.reg.ols) s.ols <- predict(e.reg.ols) # Predicted sqrt(|e|) w.ols <- 1/s.ols^4 # WLS weights= 1/s^2 = 1/sqrt(|e|)^4
## Begin iterations to obtain WLS estimator b_w b.old <- b.ols # Start iterations with OLS estimator wm.old <- as.matrix(diag(w.ols)) # W = diagonal matrix with w_i=1/s_i^2 b.diff <- 100 # Set high starting difference num.iter <- 0 # Counter for number of iterations
# Keep iterating until (b_new-b_old)'(b_new-b_old) < .00001 while (b.diff > 0.00001) { num.iter <- num.iter+1 # Increment number of iterations # b_new = (X'WX)^(-1)X'WY b.new <- solve(t(X) %*% wm.old %*% X) %*% t(X) %*% wm.old %*% Y yhat.new <- X %*% b.new # Yhat_new = Xb_new abs.e.new <- abs(Y - yhat.new) # new |e| = Y-Yhat_new # Create new weight matrix from regression of sqrt(|e_new|) on yhat_new wm.new <- as.matrix(diag(1/predict(lm(sqrt(abs.e.new)~yhat.new))^4)) b.diff <- sum((b.new-b.old)^2) # sum of squared differences of b_new,b_old b.old <- b.new # b.old is assigned b.new wm.old <- wm.new # Old weight matrix is assigned new weight matrix }
# End of loop num.iter # Number of iterations needed
# Apply wm.new to get b.new (probably not necessary) b.new <- solve(t(X) %*% wm.new %*% X) %*% t(X) %*% wm.new %*% Y b.wls <- b.new # Obtain b.wls as result from iterative process wm.wls <- wm.new # Obtain WLS matrix from iterative process
## MSE_wls = (Y-Xb-w)'W(Y-Xb_w) mse.w <- (t(Y-X%*%b.wls) %*% wm.wls %*% (Y-X%*%b.wls))/(n-p)
# s2{b_w} = MSE*(X'WX)^(-1) s2.b.wls <- mse.w[1,1]*solve(t(X) %*% wm.wls %*% X) s.b.wls <- sqrt(diag(s2.b.wls)) # s{b_w} = sqrt(diag(s2{b_w})) t.b.wls <- b.wls/s.b.wls # t = b_w/s{b} p.b.wls <- 2*(1-pt(abs(t.b.wls), n-p)) # P-value
wls.out <- cbind(b.wls, s.b.wls, t.b.wls, p.b.wls) colnames(wls.out) <- c("b_wls", "Std. Error", "t*", "P(>|t*|)") rownames(wls.out) <- c("Intercept", "Height", "Arm Length", "Hand Length")
round(ols.out, 4) round(wls.out, 4)
###################################################################
## Using gls fuction in nlme package
library(nlme) gls.mod.ols <- gls(Weight ~ Height+ArmLng+HandLng, method="ML") summary(gls.mod.ols)
## Fit variance function model with s{e_i} = alpha*(mu_i^delta) gls.mod.wls <- gls(Weight ~ Height+ArmLng+HandLng, method="ML", weights=varPower(form = ~fitted(.))) summary(gls.mod.wls)
anova(gls.mod.ols,gls.mod.wls)
## Plot Pearson residuals (e/s{e}) vs yhat for OLS and WLS par(mfrow=c(1,2)) plot(resid(gls.mod.ols, type="p") ~ fitted(gls.mod.ols), pch=16, cex=0.6) abline(h=0, col="red") plot(resid(gls.mod.wls, type="p") ~ fitted(gls.mod.wls), pch=16, cex=0.6) abline(h=0, col="red")
par(mfrow=c(1,1))
NEED work sheet
Part 1: Ballistic Tests on various layers of cloth panels
p.1.a.
p.1.c.
p.1.d.
p.1.e.
p.1.f. Comment:
DATE
film | reissue | prodCost | usRev | forRev | totRev | profit | distCost | dC_tR | dC_pC | year | pctProf_totCost |
STREET GIRL | 0 | 211 | 806 | 198 | 1004 | 500 | 293 | 0.292 | 1.389 | 1930 | 99.2 |
VAGABOND LOVER | 0 | 204 | 671 | 85 | 756 | 335 | 217 | 0.287 | 1.064 | 1930 | 79.6 |
SAINT IN NEW YO | 0 | 128 | 350 | 310 | 460 | 195 | 137 | 0.298 | 1.07 | 1938 | 73.6 |
BACHELOR MOTHER | 0 | 509 | 1170 | 805 | 1975 | 827 | 639 | 0.324 | 1.255 | 1939 | 72 |
TOP HAT | 0 | 609 | 1782 | 1420 | 3202 | 1325 | 1268 | 0.396 | 2.082 | 1936 | 70.6 |
LITTLE WOMEN[*] | 1 | 424 | 1337 | 663 | 2000 | 800 | 776 | 0.388 | 1.83 | 1934 | 66.7 |
RIO RITA | 0 | 678 | 1775 | 625 | 2400 | 935 | 787 | 0.328 | 1.161 | 1930 | 63.8 |
CUCKOOS | 0 | 407 | 662 | 201 | 863 | 335 | 121 | 0.14 | 0.297 | 1930 | 63.4 |
FIVE CAME BACK | 0 | 225 | 441 | 280 | 721 | 265 | 231 | 0.32 | 1.027 | 1939 | 58.1 |
KITTY FOYLE | 0 | 738 | 1710 | 675 | 2385 | 869 | 778 | 0.326 | 1.054 | 1941 | 57.3 |
MAN TO REMEMBER | 0 | 118 | 293 | 123 | 416 | 146 | 152 | 0.365 | 1.288 | 1939 | 54.1 |
KING KONG[*] | 1 | 672 | 745 | 1111 | 1856 | 650 | 534 | 0.288 | 0.795 | 1933 | 53.9 |
FOLLOW THE FLEE | 0 | 747 | 1532 | 1175 | 2727 | 945 | 1035 | 0.38 | 1.386 | 1936 | 53 |
ANNE OF GREENIG | 0 | 226 | 573 | 220 | 793 | 272 | 295 | 0.372 | 1.305 | 1935 | 52.2 |
INFORMER | 0 | 243 | 455 | 495 | 950 | 325 | 382 | 0.402 | 1.572 | 1935 | 52 |
ROBERTA | 0 | 610 | 1467 | 868 | 2335 | 770 | 955 | 0.409 | 1.566 | 1935 | 49.2 |
GAY DIVORCEE | 0 | 520 | 1077 | 697 | 1774 | 584 | 670 | 0.378 | 1.288 | 1935 | 49.1 |
EX MRS BRADFORD | 0 | 369 | 730 | 354 | 1084 | 350 | 365 | 0.337 | 0.989 | 1936 | 47.7 |
STAR OF MIDNIG[*] | 1 | 280 | 575 | 256 | 831 | 265 | 286 | 0.344 | 1.021 | 1935 | 46.8 |
SKY GIANT | 0 | 181 | 370 | 148 | 518 | 165 | 172 | 0.332 | 0.95 | 1938 | 46.7 |
SWING TIME | 0 | 886 | 1624 | 994 | 2618 | 830 | 902 | 0.345 | 1.018 | 1936 | 46.4 |
FLYING DOWN TO | 0 | 462 | 923 | 622 | 1545 | 480 | 603 | 0.39 | 1.305 | 1934 | 45.1 |
MELODY CRUISE | 0 | 163 | 316 | 169 | 485 | 150 | 172 | 0.355 | 1.055 | 1933 | 44.8 |
CROSS FIRE | 0 | 26 | 74 | 24 | 98 | 30 | 42 | 0.429 | 1.615 | 1933 | 44.1 |
SECOND WIFE | 0 | 68 | 140 | 57 | 197 | 58 | 71 | 0.36 | 1.044 | 1936 | 41.7 |
HOOK LINE AND S | 0 | 287 | 595 | 185 | 780 | 225 | 268 | 0.344 | 0.934 | 1931 | 40.5 |
COME ON DANGER | 0 | 31 | 29 | 27 | 106 | 30 | 45 | 0.425 | 1.452 | 1933 | 39.5 |
PARTNERS | 0 | 33 | 82 | 27 | 109 | 30 | 46 | 0.422 | 1.394 | 1932 | 38 |
MY FAVORITE WIF | 0 | 921 | 1452 | 605 | 2057 | 505 | 631 | 0.307 | 0.685 | 1940 | 32.5 |
BRIDE WALKS OUT | 0 | 289 | 502 | 168 | 670 | 164 | 217 | 0.324 | 0.751 | 1936 | 32.4 |
CRACKED NUTS | 0 | 261 | 505 | 112 | 617 | 150 | 206 | 0.334 | 0.789 | 1931 | 32.1 |
GUN LAW[*] | 1 | 78 | 148 | 47 | 195 | 47 | 70 | 0.359 | 0.897 | 1938 | 31.8 |
PHANTOM OF CRES | 0 | 187 | 348 | 88 | 436 | 100 | 149 | 0.342 | 0.797 | 1933 | 29.8 |
FIFTH AVENUE GI | 0 | 607 | 950 | 420 | 1370 | 314 | 449 | 0.328 | 0.74 | 1939 | 29.7 |
LUCKY DEVILS | 0 | 117 | 179 | 106 | 285 | 65 | 103 | 0.361 | 0.88 | 1933 | 29.5 |
MARSHALL OF ME[*] | 1 | 75 | 131 | 49 | 180 | 41 | 64 | 0.356 | 0.853 | 1940 | 29.5 |
IRENE | 0 | 578 | 845 | 775 | 1620 | 367 | 675 | 0.417 | 1.168 | 1940 | 29.3 |
GRIDIRON FLASH | 0 | 78 | 167 | 32 | 199 | 43 | 78 | 0.392 | 1 | 1935 | 27.6 |
SON OF KONG | 0 | 269 | 331 | 285 | 616 | 133 | 214 | 0.347 | 0.796 | 1934 | 27.5 |
THAT'S RIGHT YO | 0 | 271 | 926 | 92 | 1018 | 219 | 528 | 0.519 | 1.948 | 1940 | 27.4 |
ALICE ADAMS | 0 | 342 | 574 | 196 | 770 | 164 | 264 | 0.343 | 0.772 | 1935 | 27.1 |
COMMON LAW | 0 | 339 | 573 | 140 | 713 | 150 | 224 | 0.314 | 0.661 | 1932 | 26.6 |
BILL OF DIVORCE | 0 | 250 | 383 | 148 | 531 | 110 | 171 | 0.322 | 0.684 | 1933 | 26.1 |
IN PERSON | 0 | 493 | 496 | 219 | 715 | 147 | 75 | 0.105 | 0.152 | 1936 | 25.9 |
GHOST VALLEY | 0 | 41 | 74 | 27 | 101 | 20 | 40 | 0.396 | 0.976 | 1932 | 24.7 |
MORNING GLORY | 0 | 239 | 377 | 205 | 582 | 115 | 228 | 0.392 | 0.954 | 1934 | 24.6 |
SIX GUN GOLD | 0 | 49 | 98 | 15 | 113 | 22 | 42 | 0.372 | 0.857 | 1941 | 24.2 |
SEVEN KEYS TO B | 0 | 251 | 437 | 80 | 517 | 100 | 166 | 0.321 | 0.661 | 1930 | 24 |
SHALL WE DANCE | 0 | 991 | 1275 | 893 | 2168 | 413 | 764 | 0.352 | 0.771 | 1937 | 23.5 |
LOVE COMES ALON | 0 | 220 | 366 | 112 | 478 | 90 | 168 | 0.351 | 0.764 | 1930 | 23.2 |
SPITFIRE | 0 | 223 | 492 | 112 | 604 | 113 | 268 | 0.444 | 1.202 | 1934 | 23 |
PACIFIC LINER | 0 | 241 | 318 | 190 | 508 | 87 | 180 | 0.354 | 0.747 | 1939 | 20.7 |
MOST DANGEROUS | 0 | 219 | 263 | 180 | 443 | 75 | 149 | 0.336 | 0.68 | 1933 | 20.4 |
SEA DEVILS | 0 | 477 | 580 | 360 | 940 | 155 | 308 | 0.328 | 0.646 | 1937 | 19.7 |
CAUGHT PLASTERE | 0 | 281 | 442 | 107 | 549 | 90 | 178 | 0.324 | 0.633 | 1932 | 19.6 |
YOU'LL FIND OUT | 0 | 371 | 855 | 175 | 1030 | 167 | 492 | 0.478 | 1.326 | 1941 | 19.4 |
PEAGH O RENO | 0 | 293 | 461 | 109 | 570 | 90 | 187 | 0.328 | 0.638 | 1932 | 18.8 |
MOTHER GAREY'S | 0 | 358 | 543 | 160 | 703 | 110 | 235 | 0.334 | 0.656 | 1938 | 18.5 |
LOVING THE LADI | 0 | 207 | 370 | 58 | 428 | 65 | 156 | 0.364 | 0.754 | 1930 | 17.9 |
LOST PATROL[*] | 1 | 262 | 343 | 240 | 583 | 84 | 237 | 0.407 | 0.905 | 1934 | 16.8 |
LUGKY PARTNERS | 0 | 733 | 880 | 510 | 1390 | 200 | 457 | 0.329 | 0.623 | 1940 | 16.8 |
TOM DIGK AND HA | 0 | 806 | 1223 | 405 | 1628 | 234 | 588 | 0.361 | 0.73 | 1941 | 16.8 |
CHECK AND DOUBL | 0 | 967 | 1751 | 59 | 1810 | 260 | 583 | 0.322 | 0.603 | 1931 | 16.8 |
DIPLOMANIACS | 0 | 242 | 323 | 138 | 461 | 65 | 154 | 0.334 | 0.636 | 1933 | 16.4 |
BORN WITH LOVE | 0 | 338 | 452 | 117 | 649 | 90 | 221 | 0.341 | 0.654 | 1932 | 16.1 |
YOU CAN'T BUY L | 0 | 86 | 137 | 38 | 175 | 24 | 65 | 0.371 | 0.756 | 1937 | 15.9 |
LIFE OF VERGIE | 0 | 331 | 506 | 148 | 654 | 87 | 236 | 0.361 | 0.713 | 1934 | 15.3 |
HIT THE DECK | 0 | 542 | 980 | 152 | 1132 | 145 | 445 | 0.393 | 0.821 | 1930 | 14.7 |
EVERYTHING'S RO | 0 | 140 | 205 | 70 | 275 | 35 | 100 | 0.364 | 0.714 | 1931 | 14.6 |
LOVE AFFAIR | 0 | 860 | 975 | 775 | 1750 | 221 | 669 | 0.382 | 0.778 | 1939 | 14.5 |
MAD MISS MANTON | 0 | 383 | 496 | 220 | 716 | 88 | 245 | 0.342 | 0.64 | 1939 | 14 |
IN NAME ONLY | 0 | 722 | 926 | 395 | 1321 | 155 | 444 | 0.336 | 0.615 | 1939 | 13.3 |
ROOKIE COP | 0 | 77 | 108 | 54 | 162 | 18 | 67 | 0.414 | 0.87 | 1939 | 12.5 |
THAT GIRL FROM | 0 | 534 | 683 | 380 | 1063 | 101 | 428 | 0.403 | 0.801 | 1937 | 10.5 |
PRIMROSE PATH | 0 | 702 | 898 | 302 | 1200 | 110 | 388 | 0.323 | 0.553 | 1940 | 10.1 |
DEVIL AND MISS | 0 | 664 | 921 | 500 | 1421 | 117 | 640 | 0.45 | 0.964 | 1941 | 9 |
ANNIE OAKLEY | 0 | 354 | 435 | 185 | 620 | 48 | 218 | 0.352 | 0.616 | 1936 | 8.4 |
RUNAWAY BRIDE | 0 | 103 | 160 | 44 | 204 | 15 | 86 | 0.422 | 0.835 | 1930 | 7.9 |
SHOOTING STRAIG | 0 | 238 | 378 | 40 | 418 | 30 | 150 | 0.359 | 0.63 | 1930 | 7.7 |
VIVACIOUS LADY[*] | 1 | 703 | 830 | 376 | 1206 | 75 | 428 | 0.355 | 0.609 | 1937 | 6.6 |
THREE MUSKETEER | 0 | 512 | 451 | 449 | 900 | 55 | 333 | 0.37 | 0.65 | 1935 | 6.5 |
GIRL A GUY AND | 0 | 412 | 578 | 270 | 848 | 49 | 387 | 0.456 | 0.939 | 1941 | 6.1 |
MR AND MRS SMIT | 0 | 743 | 981 | 419 | 1400 | 75 | 582 | 0.416 | 0.783 | 1941 | 5.7 |
STAGE DOOR | 0 | 952 | 1250 | 512 | 1762 | 81 | 729 | 0.414 | 0.766 | 1938 | 4.8 |
HALF SHOT AT SU | 0 | 529 | 658 | 271 | 929 | 40 | 360 | 0.388 | 0.681 | 1931 | 4.5 |
NURSE EDITH CAV | 0 | 508 | 462 | 620 | 1082 | 38 | 536 | 0.495 | 1.055 | 1940 | 3.6 |
HUNGHBAGK OF NO | 0 | 1826 | 1530 | 1625 | 3155 | 100 | 1229 | 0.39 | 0.673 | 1940 | 3.3 |
BREAK OF HEARTS | 0 | 427 | 437 | 258 | 695 | 16 | 252 | 0.363 | 0.59 | 1935 | 2.4 |
DOUBLE HARNESS | 0 | 329 | 379 | 114 | 493 | 10 | 154 | 0.312 | 0.468 | 1933 | 2.1 |
HIPS HIPS HOORA | 0 | 336 | 435 | 190 | 625 | 8 | 281 | 0.45 | 0.836 | 1934 | 1.3 |
SUNNY | 0 | 676 | 560 | 536 | 1096 | 7 | 413 | 0.377 | 0.611 | 1941 | 0.6 |
HE KNEW WOMEN | 0 | 103 | 161 | 32 | 193 | 0 | 90 | 0.466 | 0.874 | 1930 | 0 |
NO NO NANETTE | 0 | 570 | 490 | 450 | 940 | -2 | 372 | 0.396 | 0.653 | 1941 | -0.2 |
WINTER SET | 0 | 407 | 467 | 215 | 682 | -2 | 277 | 0.406 | 0.681 | 1937 | -0.3 |
BACHELOR BAIT | 0 | 120 | 168 | 27 | 19 | -3 | 78 | 4.105 | 0.65 | 1934 | -1.5 |
LITTLE MINSITER | 0 | 648 | 723 | 381 | 1104 | -9 | 465 | 0.421 | 0.718 | 1935 | -0.8 |
GREAT MAN VOTES | 0 | 265 | 337 | 95 | 432 | -10 | 177 | 0.41 | 0.668 | 1939 | -2.3 |
STORY OF V AND | 0 | 1196 | 1120 | 705 | 1825 | -50 | 679 | 0.372 | 0.568 | 1938 | -2.7 |
MY LIFE WITH CA | 0 | 503 | 530 | 300 | 830 | -32 | 359 | 0.433 | 0.714 | 1941 | -3.7 |
TRIPLE JUSTICE | 0 | 85 | 110 | 19 | 129 | -5 | 49 | 0.38 | 0.576 | 1940 | -3.7 |
CAREFREE | 0 | 1253 | 1113 | 618 | 1731 | -68 | 546 | 0.315 | 0.436 | 1938 | -3.8 |
BAD LANDS | 0 | 84 | 108 | 33 | 141 | -6 | 63 | 0.447 | 0.75 | 1939 | -4.1 |
DAMSEL IN DISTR | 0 | 1035 | 1010 | 455 | 1465 | -65 | 495 | 0.338 | 0.478 | 1937 | -4.2 |
SIN TAKES A HOL | 0 | 450 | 463 | 160 | 623 | -40 | 213 | 0.342 | 0.473 | 1931 | -6 |
GUNGA DIN[*] | 1 | 1915 | 1507 | 1300 | 2807 | -193 | 1085 | 0.387 | 0.567 | 1939 | -6.4 |
DEVOTION | 0 | 394 | 448 | 94 | 542 | -40 | 188 | 0.347 | 0.477 | 1932 | -6.9 |
OF HUMAN BONDA[*] | 1 | 403 | 467 | 125 | 592 | -45 | 234 | 0.395 | 0.581 | 1934 | -7.1 |
STINGAREE | 0 | 408 | 368 | 195 | 563 | -49 | 204 | 0.362 | 0.5 | 1934 | -8 |
WHAT PRICE HOLL | 0 | 616 | 430 | 141 | 571 | -50 | 205 | 0.359 | 0.333 | 1932 | -6.1 |
HOLD'EM JAIL | 0 | 408 | 416 | 95 | 511 | -55 | 158 | 0.309 | 0.387 | 1933 | -9.7 |
MARY OF SCOTLAN | 0 | 864 | 791 | 485 | 1276 | -165 | 577 | 0.452 | 0.668 | 1936 | -11.5 |
YOUNG DONAVON'S | 0 | 279 | 445 | 173 | 618 | -100 | 439 | 0.71 | 1.573 | 1931 | -13.9 |
LOST SQUADRON[*] | 1 | 621 | 534 | 198 | 732 | -125 | 236 | 0.322 | 0.38 | 1932 | -14.6 |
SILVER HORDE | 0 | 423 | 418 | 144 | 562 | -100 | 239 | 0.425 | 0.565 | 1931 | -15.1 |
LIFE OF THE PAR | 0 | 489 | 457 | 127 | 584 | -111 | 206 | 0.353 | 0.421 | 1938 | -16 |
SWISS FAMILY RO | 0 | 681 | 587 | 303 | 890 | -180 | 389 | 0.437 | 0.571 | 1940 | -16.8 |
LIVING ON LOVE | 0 | 112 | 106 | 29 | 135 | -28 | 51 | 0.378 | 0.455 | 1938 | -17.2 |
ANIMAL KINGDOM | 0 | 458 | 439 | 89 | 528 | -110 | 180 | 0.341 | 0.393 | 1933 | -17.2 |
WISE GIRL | 0 | 448 | 328 | 162 | 490 | -114 | 156 | 0.318 | 0.348 | 1938 | -18.9 |
LADY WITH A PAS | 0 | 541 | 475 | 120 | 595 | -140 | 194 | 0.326 | 0.359 | 1932 | -19 |
LAST DAYS OF P[*] | 1 | 818 | 489 | 491 | 980 | -237 | 399 | 0.407 | 0.488 | 1935 | -19.5 |
AFTER TONIGHT | 0 | 355 | 250 | 130 | 380 | -100 | 125 | 0.329 | 0.352 | 1933 | -20.8 |
HAVING A WONDER | 0 | 966 | 771 | 237 | 1008 | -267 | 309 | 0.307 | 0.32 | 1938 | -20.9 |
GIRL CRAZY | 0 | 532 | 432 | 123 | 555 | -150 | 173 | 0.312 | 0.325 | 1932 | -21.3 |
QUICK MONEY | 0 | 120 | 102 | 33 | 135 | -37 | 52 | 0.385 | 0.433 | 1938 | -21.5 |
JOY OF LIVING | 0 | 1086 | 722 | 415 | 1137 | -314 | 365 | 0.321 | 0.336 | 1938 | -21.6 |
TOO MANY WIVES | 0 | 105 | 92 | 30 | 122 | -35 | 52 | 0.426 | 0.495 | 1937 | -22.3 |
ALLEGHENY UPRIS | 0 | 696 | 660 | 90 | 750 | -230 | 284 | 0.379 | 0.408 | 1940 | -23.5 |
THEY KNEW WHAT | 0 | 781 | 577 | 355 | 932 | -291 | 442 | 0.474 | 0.566 | 1941 | -23.8 |
VIGIL IN THE NI | 0 | 920 | 666 | 338 | 1004 | -327 | 411 | 0.409 | 0.447 | 1940 | -24.6 |
BRINGING UP THE BA[*] | 1 | 1073 | 715 | 394 | 1109 | -365 | 401 | 0.362 | 0.374 | 1937 | -24.8 |
BIRD OF PARADIS | 0 | 752 | 503 | 250 | 753 | -250 | 251 | 0.333 | 0.334 | 1932 | -24.9 |
NEW FAGES OF 1931 | 0 | 728 | 650 | 125 | 775 | -258 | 305 | 0.394 | 0.419 | 1937 | -25 |
WOMEN I LOVE | 0 | 725 | 553 | 230 | 783 | -266 | 324 | 0.414 | 0.447 | 1937 | -25.4 |
CONSPIRACY | 0 | 118 | 107 | 31 | 138 | -50 | 70 | 0.507 | 0.593 | 1930 | -26.6 |
GASE OF SGT GRI | 0 | 467 | 407 | 49 | 456 | -170 | 159 | 0.349 | 0.34 | 1930 | -27.2 |
ROOM SERVIGE | 0 | 884 | 665 | 210 | 875 | -330 | 321 | 0.367 | 0.363 | 1939 | -27.4 |
WOMAN REBELS | 0 | 574 | 347 | 236 | 583 | -222 | 231 | 0.396 | 0.402 | 1936 | -27.6 |
DIXIANA | 0 | 747 | 500 | 280 | 780 | -300 | 333 | 0.427 | 0.446 | 1931 | -27.8 |
RADIO CITY REV | 0 | 810 | 565 | 185 | 750 | -300 | 240 | 0.32 | 0.296 | 1938 | -28.6 |
CIMARRON[*] | 1 | 1433 | 1122 | 261 | 1383 | -565 | 515 | 0.372 | 0.359 | 1931 | -29 |
CONQUERORS | 0 | 619 | 462 | 124 | 528 | -230 | 139 | 0.263 | 0.225 | 1933 | -30.3 |
TOAST OF NEW YO | 0 | 1072 | 846 | 202 | 1048 | -530 | 506 | 0.483 | 0.472 | 1937 | -33.6 |
I DREAM TOO MUC | 0 | 627 | 391 | 249 | 640 | -350 | 363 | 0.567 | 0.579 | 1936 | -35.4 |
HIS FAMILY TREE | 0 | 127 | 89 | 27 | 116 | -65 | 54 | 0.466 | 0.425 | 1936 | -35.9 |
BEAU IDEAL | 0 | 707 | 390 | 185 | 575 | -330 | 198 | 0.344 | 0.28 | 1931 | -36.5 |
MAN OF TWO WORL | 0 | 388 | 194 | 114 | 308 | -220 | 140 | 0.455 | 0.361 | 1934 | -41.7 |
SILVIA SCARLET | 0 | 641 | 321 | 176 | 497 | -362 | 219 | 0.441 | 0.342 | 1936 | -42.1 |
CAPTAIN HURRICA | 0 | 208 | 124 | 26 | 150 | -126 | 68 | 0.453 | 0.327 | 1935 | -45.7 |
GAY DIPLOMAT | 0 | 184 | 96 | 35 | 131 | -115 | 62 | 0.473 | 0.337 | 1931 | -46.7 |
HITTING A NEW H | 0 | 727 | 305 | 183 | 488 | -431 | 192 | 0.393 | 0.264 | 1938 | -46.9 |
TWO ALONE | 0 | 236 | 125 | 39 | 164 | -158 | 86 | 0.524 | 0.364 | 1934 | -49.1 |
WOMAN COMANDS | 0 | 415 | 186 | 56 | 242 | -265 | 92 | 0.38 | 0.222 | 1932 | -52.3 |
ABE LINCOLN IN | 0 | 1004 | 535 | 131 | 666 | -740 | 402 | 0.604 | 0.4 | 1940 | -52.6 |
ENCHANTED APRIL | 0 | 346 | 127 | 38 | 165 | -260 | 79 | 0.479 | 0.228 | 1935 | -61.2 |
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started