Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Phoenix Company is considering investments in projects C1 and C2 Both require an initial investment of $276,000 and would yield the following annual net cash

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

image text in transcribed

Phoenix Company is considering investments in projects C1 and C2 Both require an initial investment of $276,000 and would yield the following annual net cash flows. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.) Net cash flows Year 1 Year 2 Year 3 Project c1 $ 28,000 124,000 184,000 $ 336,000 Project C2 $ 112,000 112,000 112,000 $ 336,000 Totals a. The company requires a 9% return from its investments. Compute net present values using factors from Table B.1 in Appendix B to determine which projects, if any, should be accepted. b. Using the answer from part a, is the internal rate of return higher or lower than 9% for (i) Project C1 and (ii) Project C2? Complete this question by entering your answers in the tabs below. Required A Required B The company requires a 9% return from its investments. Compute net present values using factors from Table 3.1 in Appendix B to determine which projects, if any, should be accepted. (Negative net present values should be indicated with a minus sign. Round your present value factor to 4 decimals. Round your answers to the nearest whole dollar.) Project 01 Initial Investment Chart Values are Based on: IE % Year Cash Inflow PV Factor Present Value Year 1 Year 2 Year 3 = 0 Project C2 Initial Investment Year Cash Inflow PV Factor Present Value Year 1 Year 2 Year 3 Project 02 Initial Investment Year Cash Inflow x PV Factor Present Value Year 1 Year 2 Year 3 0 Required B Phoenix Company is considering investments in projects C1 and C2 Both require an initial investment of $276,000 and would yield the following annual net cash flows. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.) Net cash flows Year 1 Year 2 Year 3 Totals Project C1 $ 28,000 124,000 184,000 $ 336,000 Project C2 $ 112,000 112,000 112,000 $ 336,000 a. The company requires a 9% return from its investments. Compute net present values using factors from Table B.1 in Appendix B to determine which projects, if any, should be accepted. b. Using the answer from part a, is the internal rate of return higher or lower than 9% for ( Project 01 and (ii) Project C2? Complete this question by entering your answers in the tabs below. Required A Required B Using the answer from part a, is the internal rate of return higher or lower than 9% for (i) Project C1 and (ii) Project C2? (i) is the internal rate of return higher or lower than 9% for Project C12 (ii) is the internal rate of return higher or lower than 9% for Project 027 Required A Table B.1* Present Value of 1 p=1/(1+1) Rate Periods 1% 2% 3% 4% 5% 6% 7% 9% 10% 12% 15% Periods 1 0.9901 0.9804 0.9709 0.9615 0.9434 0.9346 8% 0.9259 0.8573 0.9174 0.9091 0.8929 0.8696 0.9524 0.9070 1 2 0.9803 0.9612 0.9426 0.8734 0.8264 0.9246 0.8890 0.7972 0.7561 2 3 0.9706 0.9423 0.8900 0.8396 0.9151 0.8163 0.7938 0.8417 0.7722 0.7084 0.7513 0.7118 0.6575 3 4 0.9610 0.9238 0.8885 0.7921 0.7629 0.7350 0.6830 0.6355 0.5718 4 0.8548 0.8219 5 0.9515 0.9057 0.8626 0.8638 0.8227 0.7835 0.7462 0.7107 0.7130 0.6806 0.6499 0.6209 0.5674 0.4972 5 6 0.9420 0.8880 0.8375. 0.7903 0.6302 0.5963 0.5645 0.5066 0.4323 6 0.7473 0.7050 0.6651 016274 7 0.9327 0.8706 0.8131 0.7599 0.6663 0.6227 0.5820 0.5470 0.4523 0.3759 7 8 0.5132 0.4665 0.9235 0.8535 0.7894 0.7307 0.6768 0.5019 0.4039 0.3269 8 9 0.9143 0.8368 0.7664 0.7026 0.6446 0.5919 0.5439 0.4604 0.4241 0.3606 0.2843 9 10 0.9053 0.8203 0.7441 0.6756 0.6139 0.5584 0.4224 0.3855 0.3220 0.2472 10 11 0.8963 0.8043 0.7224 0.6496 0.5268 0.3875 0.5835 0.5403 0.5002 0.4632 0.4289 0.3971 0.3677 0.3405 0.3152 0.2875 0.2149 11 0.5083 0.4751 0.4440 0.4150 0.3505 0.3186 12 0.8874 0.7885 0.7014 0.6246 0.4970 0.3555 0.2567 0.5847 0.5568 0.5303 0.5051 0.1869 12 13 0.8787 0.7730 0.6810 0.6006 0.3262 0.2897 0.2292 13 0.4688 0.4423 14 0.8700 0.7579 0.6611 0.5775 0.3878 0.2992 0.2633 0.2046 0.1625 0.1413 0.1229 14 15 0.8613 0.7430 0.6419 0.5553 0.4810 0.4173 0.3624 0.2745 0.2394 0.1827 15 0.8528 0.6232 0.5339 0.4581 0.3936 0.3387 0.2919 0.2519 0.2176 0.1631 0.1069 16 16 17 18 0.7284 0.7142 0.4363 0.3714 0.3166 0.2703 0.2311 0.1978 0.1456 0.0929 17 0.8444 0.8360 0.8277 0.6050 0.5874 0.5134 0.4936 0.4155 0.2502 0.2120 0.1799 0.1300 0.0808 18 0.7002 0.6864 0.6730 19 0.2959 0.2765 0.1945 0.3503 0.3305 0.3118 0.1635 0.1161 0.0703 0.5703 0.5537 19 0.4746 0.4564 0.3957 0.3769 0.2317 0.2145 20 0.8195 0.2584 0.1784 0.1486 0.1037 0.0611 20 4 0.9610 0.9238 0.8885 0.8548 0.8227 0.7921 0.7629 0.7350 0.7084 0.6830 0.6355 0.5718 4 5 0.9515 0.8626 0.8219 0.7835 0.7130 0.6806 0.6499 0.6209 0.5674 0.4972 5 0.9057 0.8880 6 0.9420 0.8375 0.7903 0.7462 0.6302 0.5963 0.5645 0.5066 0.4323 6 7 0.8706 0.8131 0.7599 0.5470 0.4523 0.3759 7 0.9327 0.9235 0.9143 0.5835 0.5403 0.5132 0.4665 8 0.7894 0.7307 0.5019 0.4039 0.3269 8 0.8535 0.8368 0.6663 0.6227 0.5820 0.5439 0.5083 0.4751 9 0.7664 0.7026 0.7473 0.7050 0.6651 0.6274 0.5919 0.5584 0.5268 0.4970 0.4688 0.5002 0.4604 0.4241 0.3606 0.2843 9 10 0.7441 0.6756 0.4632 0.3855 0.3220 0.2472 10 0.9053 0.8963 0.8874 0.8203 0.8043 11 0.7224 0.6496 0.4289 0.4224 0.3875 0.3555 0.3505 0.2875 0.7107 0.6768 0.6446 0.6139 0.5847 0.5568 0.5303 0.5051 0.4810 0.4581 0.2149 11 12 0.7885 0.7014 0.4440 0.3186 0.2567 0.1869 12 13 0.8787 0.7730 0.6810 0.6246 0.6006 0.5775 0.3971 0.3677 0.3405 0.3262 0.2897 0.2292 0.1625 0.4150 0.3878 13 14 0.8700 0.7579 0.6611 0.4423 0.2633 0.2046 0.1413 14 15 0.8613 0.7430 0.6419 0.3152 0.2394 0.1827 0.2992 0.2745 0.2519 0.1229 0.5553 0.5339 15 0.4173 0.3936 0.3624 0.3387 16 0.8528 0.7284 0.6232 0.2919 0.2176 0.1631 0.1069 16 17 0.8444 0.7142 0.6050 0.5134 0.4363 0.2311 0.1978 0.1456 0.0929 17 0.2703 0.2502 18 0.8360 0.7002 0.5874 0.2120 0.3166 0.2959 0.2765 0.1300 0.0808 0.4936 0.4746 18 0.4155 0.3957 0.3714 0.3503 0.3305 0.3118 19 0.8277 0.6864 0.5703 0.2317 0.1945 0.1635 0.1161 0.0703 19 20 0.8195 0.6730 0.5537 0.4564 0.3769 0_2145 0.1784 0.1486 0.1037 0.0611 20 0.2584 0.1842 25 0.7798 0.6095 0.4776 0.3751 0.2953 0.2330 0.1460 0.1160 0.0923 0.0588 0.0304 25 30 0.7419 0.5521 0.3083 0.2314 0.1741 0.0994 0.0754 0.0573 0.0334 0.0151 30 0.4120 0.3554 0.1314 0.0937 35 0.7059 0.5000 0.2534 0.1813 0.0676 0.0490 0.0356 0.0189 0.0075 35 0 1301 010972 40 0.6717 0.4529 0.3066 0.2083 0.1420 0.0668 0.0460 0.0318 0.0221 0.0107 0.0037 40 *Used to compute the present value of a known future amount. For example: How much would you need to invest today at 10% compounded semiannually to accumulate $5,000 in vears from today? Using the factors of n = 12 and i = 5% (12 semiannual periods and a semiannual rate of 596), the factor is 0.5368. You would need to invest $2.784 today ($5,000 0.5568). LOLI.num Table B.2 Future Value of 1 f=(1 + i)" Periods 1% 2% 3% 4% 5% Rate 7% 6% 8% 0 9% 1.0000 10% 1.0000 12% 15% 1.0000 Periods 1.0000 1.0000 1.0000 1 1.0000 1.0100 1.0200 1.0000 1.0000 1.0300 0 1.0400 1.0600 10700 1.0000 1.1500 2 1.0201 1. 1000 1.0404 1.1200 1.0609 1 1.0816 1.1236 3 1.0000 1.0800 1.1664 1.2597 1.3605 1.0303 1.0000 1.0500 1.1025 1.1576 1.2155 1.2763 1.2100 12544 1.0612 1.0927 1.3225 2 1.1249 1.1449 1.2250 1.3108 1.0900 1.1881 1.2950 1.4116 1.5386 4 1.0406 1.3310 1.0824 1.4049 1.1255 1.1910 1.2625 1.3382 3 11699 1.5209 1.7490 5 1.5735 1.0510 1.1041 1.1593 4 1.2167 1.4641 1.6105 1.4026 1.4693 6 10615 1.7623 2.0114 1.1262 5 - 1.1941 1.2653 1 3401 1.4185 1.5007 7 1.7716 1.0721 1.1487 2.3131 1.2299 1.5869 1.7138 1.3159 6 16771 1.8280 1.6058 1.9738 2.2107 8 19487 1.0829 1.5036 1.5938 2.6600 1.1717 1.2668 7 1.4071 1.4775 1.5513 1.3686 1.8509 1.9926 2.1436 9 1.0937 3.0590 1.7182 1.8385 8 1.3048 1.1951 1.2190 1.6895 2.1719 2.3579 10 1.1046 3.5179 9 1.3439 1.7908 1.9672 23674 1.6289 1.7103 2.5937 11 4.0456 1.1157 10 1.2434 13842 1.8983 2.1049 2.5804 2.8531 12 1.1268 4.6524 11 1.4258 1.7959 1.2682 1.2936 2.0122 2.2522 2.8127 3.1384 13 1.1381 5.3503 12 1.4685 1.4233 1.4802 1.5395 1.6010 1.6651 1.7317 1.8009 1.8730 1.9479 1.8856 2.1329 2.4098 3.0658 3.4523 14 1.1495 13 1.5126 1.9799 2.2609 1.3195 1.3459 2.5785 1.9990 2.1589 2.3316 2.5182 2.7196 2.9372 3.1722 3.4259 3.7000 3.9960 4.3157 2.4760 2.7731 3.1058 3.4785 3.8960 4.3635 4.8871 5.4736 6.1304 6.5660 7.6900 8.6128 3.3417 3.7975 15 14 11610 1.5580 2.0789 2.3966 2.7590 3.6425 6.1528 7.0757 8.1371 9.3576 4.1772 16 1.1726 15 1.3728 2.1829 2.5404 2.9522 3.9703 4.5950 17 1.1843 16 1.4002 2.2920 2.6928 3.1588 1.6047 1.6528 1.7024 1.7535 43276 5.0545 18 17 1.1961 1.4282 2.0258 2.4066 3.3799 4.7171 5.5599 10.7613 123755 14.2318 19 1.2081 2.8543 3.0256 18 1.4568 2.1068 2.5270 3.6165 5.1417 6.1159 19 LS LO1 1011 2659 2011 1.0400 1.0824 1.12 1.1699 1.4116 1.4641 1.7490 4 1.2155 1.2763 1.0510 1.3108 1.4026 1.1041 1.3605 1.4693 5 1.5735 1.7623 1.1593 1.5386 1.6105 2.0114 5 1.2167 1.2653 6 1.0615 1.1262 1.1941 1.5869 1.7716 1.9738 2.3131 6 7 1.0721 1.5007 1.6058 1.6771 1.8280 1.1487 1.2625 1.3382 1.4185 1.5036 1.5938 1.6895 1.7908 1.3159 1.2299 1.2668 1.9487 2.2107 2.6600 7 1.7138 1.8509 8 1.0829 1.1717 1.3686 1.9926 2.1436 2.4760 3.0590 8 1.7182 1.8385 9 1.0937 1.1951 1.3048 1.4233 2.1719 2.3579 2.7731 3.5179 9 10 1.1046 1.2190 1.3439 1.4802 1.9672 2.5937 3.1058 4.0456 10 11 1.1157 1.2434 1.3842 2.1049 2.8531 3.4785 4.6524 11 12 1.1268 1.2682 1.4258 3.1384 3.8960 12 2.3674 2.5804 2.8127 3.0658 33417 13 1.1381 53503 6.1528 1.4685 13 1.5395 1.6010 1.6651 1.7317 1.8009 1.8730 1.2936 1.3195 1.8983 2.0122 2.1329 2.2609 2.3966 2.5404 1.1495 14 2.2522 2.4098 2.5785 2.7590 29522 3.4523 3.7975 1.9990 2.1589 2.3316 2.5182 2.7196 2.9372 3.1722 3.4259 3.7000 3.9960 4.3157 4.3635 4.8871 1.5126 14 1 3401 1.4071 1.4775 1.5513 1.6289 1.7103 1.7959 1.8856 19799 2.0789 2.1829 2.2920 2.4066 2.5270 2.6533 3.3864 -43219 5.5160 7.0400 7,0757 8.1371 15 1.1610 1.3459 1.5580 3.6425 4.1772 5.4736 15 16 1.1726 1.6047 3.9703 4.5950 6.1304 9.3576 16 1.3728 1.4002 17 1.1843 1.6528 1.9479 2.6928 4.3276 6.8660 10.7613 17 5.0545 55599 18 1.1961 1.7024 4.7171 7.6900 12.3755 18 1.4282 1.4568 2.0258 2.1068 19 1.7535 5.1417 6.1159 8.6128 14.2318 19 1.2081 1.2202 20 1.4859 1.8061 2.1911 4.6610 5.6044 6.7275 9.6463 20 3.1588 3.3799 3.6165 3.8697 5.4274 7.6123 10.6766 14.9745 16.3665 32.9190 25 1.6406 2.8543 3.0256 3.2071 4.2919 5.7435 7.6861 10.2857 10.8347 17.0001 1.2824 13478 25 2.0938 2.4273 2.6658 3.2434 6.8485 10.0627 8.6231 13.2677 30 1.8114 17.4494 29.9599 66.2118 30 35 1.4166 1.9999 2.8139 3.9461 14.7853 20.4140 28.1024 52.7996 35 133.1755 267.8635 40 14889 2.2080 3.2620 4.8010 21.7245 31.4094 +5.2593 93.0510 40 Used to compute the future value of a known present amount. For example: What is the accumulated value of $3,000 invested today at 896 compounded quarterly for 5 years Using the factors of n = 20 and i = 2% (20 quarterly periods and a quarterly interest rate of 2%), the factor is 1.4859. The accumulated value is $4.457.70 ($3.000 * 1.4859). Table B.3+Present Value of an Annuity of 1 p=[1-1/(1+1)"]/i Rate Periods 1% 2% 3% 4% 5% 6% 8% 9% 12% 15% Periods 1 0.9901 0.9804 7% 0.9346 0.9709 0.9615 0.9259 0.9174 0.8929 0.8696 1 2 1.9704 1.9416 1.9135 1.8861 1.6901 0.9524 1.8594 2.7232 3.5460 1.6257 2 3 2.9410 2.8839 2.8286 2.7751 2.4018 2.2832 3 4 3.9020 3.8077 3.7171 1.7833 2.5771 3.3121 3.9927 4.6229 1.7591 2.5313 3.2397 3.8897 3.6299 10% 0.9091 1.7355 2.4869 3.1699 3.7908 4.3553 4.8684 3.0373 2.8550 4 5 4.8534 4.7135 4.5797 4.4518 3.6048 4.3295 5.0757 3.3522 5 6 5.7955 5.6014 5.2421 5.4172 6.2303 4.4859 4.1114 3.7845 6 7 6.7282 6.4720 2064 5.0330 4.5638 4.1604 7 8 7.6517 73255 7.0197 6.0021 6.7327 7.4353 5.7466 5.5348 5.3349 4.9676 4.4873 8 9 8.5660 1.8080 2.6243 3.3872 4.1002 4.7665 5.3893 5.9713 6.5152 7.0236 7.4987 7.9427 8.3577 8.7455 9.1079 8.1622 5.7590 9 7.7861 8.5302 10 6.2469 6.7101 9.4713 0.9434 18334 2.6730 3.4651 4.2124 4.9173 5.5824 6.2098 6.8017 7.3601 7.8869 8.3838 8.8527 9.2950 9.7122 10.1059 10.4773 10.8276 11.1581 5.9952 6.4177 8.9826 5.3282 5.6502 4.7716 5.0188 6.1446 10 11 10.3676 9.7868 8.1109 8.7605 9.3851 6.8052 6.4951 9.2526 9.9540 5.9377 5.2337 11 12 11.2551 10.5753 7.1607 6.8137 5.7864 6.4632 7.1078 7.7217 8.3064 8.8633 9.3936 9.8986 10.3797 10.8378 11.2741 11.6896 6.1944 5.4206 12 13 11.3484 10.6350 9.9856 7.4869 12.1337 13.0037 6.4235 13 7.1390 7.5361 7.9038 8.2442 8.5595 8.8514 14 12.1062 11.2961 5.5831 5.7245 7.7862 6.6282 14 10.5631 11.1184 15 13.8651 7.1034 7.3667 7 6061 7.8237 12.8493 11.9379 8.0607 6.8109 5.8474 15 16 14.7179 13.5777 11.6523 9.4466 8.3126 6.9740 16 17 15.5623 14.2919 9.1216 8.5436 8.0216 7.1196 17 12.1657 12.6593 9.7632 10.0591 18 12.5611 13.1661 13.7535 14.3238 14.8775 16.3983 14.9920 5.9542 6.0472 6.1280 6.1982 9.3719 8.7556 8.2014 7.2497 18 19 17.2260 15.6785 13.1339 12.0853 10.3356 9.6036 8.9501 7.3658 19 8.3649 S. 5136 20 18.0456 16.3514 13.5903 12.4622 11.4699 10.5940 9.8181 9.1285 7.4694 6.2593 20 2.0014 3.4172 > 2421 5.0757 4.9173 4.7665 4.6229 4.3553 4.1114 3.7845 6 4.4859 5.0330 7 6.7282 6.4720 6.2303 6.0021 5.7864 5.5824 5.2064 4.8684 4.5638 4.1604 7 5.3893 5.9713 8 7.6517 7.3255 7,0197 6.7327 6.4632 6.2098 5.7466 5.5348 5.3349 4.9676 4.4873 8 9 8.5660 8.1622 7.7861 7.4353 7.1078 6.8017 6.5152 6.2469 5.9952 5.7590 5.3282 4.7716 9 10 9.4713 8.9826 8.5302 8.1109 7.7217 7.3601 7.0236 6.7101 6.4177 5.6502 10 6.1446 6.4951 5.0188 5.2337 11 10.3676 9.7868 9.2526 8.7605 8.3064 7.8869 7.4987 5.9377 11 6.8052 7.1607 12 11.2551 10.5753 9.9540 9.3851 8.8633 8.3838 7.9427 6.1944 5.4206 12 . 13 12.1337 11.3484 10.6350 9.9856 9.3936 8.8527 8.3577 7.4869 13 7.1390 7.5361 7.9038 8.2442 8.5595 8.8514 14 11.2961 10.5631 9.8986 9.2950 8.7455 7.7862 14 13.0037 13.8651 15 11.9379 11.1184 9 1079 6.4235 6.6282 6.8109 6.9740 7.1196 5.5831 5.7245 5.8474 5.9542 6.0472 15 16 14.7179 9.4466 16 17 9.1216 15.5623 16.3983 17 12.1062 12.8493 13.5777 14.2919 14.9920 15.6785 16.3514 19.5235 22.3965 9.7632 10.0591 18 6.8137 7.1034 7.3667 7.6061 7.8237 8.0216 8.2014 8.3649 8.5136 9.0770 9.4269 18 19 19 12.5611 13.1661 13.7535 14.3238 14.8775 17.4131 19.6004 21.4872 23.1148 17.2260 18.0456 22.0232 10.3797 9.7122 10.8378 10.1059 11.2741 10.4773 11.6896 10.8276 12.0853 11.1581 12.4622 11.4699 14.0939 12.7834 15,3725 13.7648 16.3742 14 4982 17.1591 15.0463 11.6523 12.1657 12.6593 13.1339 13.5903 15.6221 17 2920 18.6646 19.7928 20 6.1280 6.1982 6.2593 8.0607 8.3126 8.5436 8.7556 8.9501 9.1285 9.8226 10.2737 10.5668 10.7574 20 25 9.3719 9.6036 9.8181 10.6748 11.2578 11.6546 11.9246 10.3356 10.5940 11.6536 12.4090 12.9477 13 3317 7.2497 7.3658 7.4694 7.8431 8.0552 8.1755 8.2438 6.4641 25 30 25.8077 6.5660 30 35 29.4086 24.9986 6.6166 35 9.6442 9.7791 40 32.8347 273555 6.6418 40 Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2,000 per vear for 10 years assuming an annual interest rate of 9%? For (n = 10, i = 0%), the PV factor is 6,4177. $2,000 per year for 10 years is the equivalent of $12,835 today (S2,000 6.4177). Table B.4%Future Value of an Annuity of I f=[(1 + 1"-1]/i Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10000 1.0000 1.0000 1.0000 1.0000 1 2 2.0100 2.0200 2.0300 2.0400 2.0700 2.0800 2.0900 2.1200 2.1500 2. 3 3.0301 3.0604 3.0909 3.1216 4.2465 2.1000 3.3100 3.2149 3.2464 33744 3.4725 3 4 4.0604 4.1216 4.1836 2.0500 3.1525 4.3101 5.5256 6.8019 3.2781 4.5731 4.4399 4.6410 4.7793 4.9934 1.0000 2.0600 3.1836 4.3746 5.6371 6.9753 8.3938 9.8975 4 5 5.1010 5.2040 5.3091 5.4163 4.5061 5.8666 73359 5.9847 6.1051 63528 6.7424 5 6.1520 6.3081 5.7507 7.1533 6.4684 6.6330 6 7 7.5233 7.7156 8.1152 8.7537 6 7.2135 7.4343 7.6625 7.8983 8.1420 8.6540 9.2004 9.4872 11.0668 7 8 8.2857 8.5830 8.9228 10.6366 8.8923 9.2142 10.0890 12.2997 9.5491 11.0266 10.2598 11.0285 11.4359 13.7268 8 9 9.3685 9.7546 10.1591 10.5828 12.0061 12.4876 13.0210 135795 14.7757 10 10.4622 10.9497 11.4639 11.9780 13.8164 16.7858 203037 15.1929 15.9374 11.4913 13.1808 14.9716 16.8699 175487 10 11 11.5668 12.1687 12.8078 12.5779 14.2068 15.9171 15.7836 17.5603 18.5312 20.6546 243493 12 12.6825 13.4121 13.4864 15.0258 16.6268 14.1920 14.4866 16 6455 18.9771 21.4953 11 12 17.8885 20.1406 24.1331 29.0017 13 14.6803 17.7130 18.8821 15.6178 17.0863 20.1407 22.9534 26.0192 21.3843 24.5227 28.0291 34 3519 13 14 18.2919 13.8093 14.9474 16.0969 17.2579 19.5986 22.5505 21.0151 23.2760 27.9750 40.5047 1+ 15.9739 17.2934 18.6393 15 25.1290 18.5989 20.1569 24.2149 27.1521 30.3243 32 3926 372797 29.3609 +7.5804 21.5786 23.6575 25.8404 15 16 31.7725 35.9497 27.8881 33.0034 25.6725 28.2129 +2.7533 16 17 21.7616 20.0121 21.4123 36.9737 20.0236 21.8245 23.6975 25.6454 27.6712 29.7781 40.5447 17 18 18.4304 196147 20 8109 22 0190 30.9057 33.7502 37.4502 23.4144 25.1169 48 8837 55.7497 28.1324 30.5390 41.3013 35.7175 65 0751 75.8364 SS 3118 18 19 22 8406 30.8402 33.9990 37.3790 40.9955 100 33.7600 41.4463 46.0183 45.3992 51.1591 572750 19 20 24.2974 26.8704 33.0660 36.7856 63.4397 720524 45.7620 51 1601 102 +436 20 LA SILVA 2.1 .4 VOVA 4.1210 4.1000 4.240 4.3101 4.4399 4.061 4.5731 4.6410 4.7793 4.9954 4.5/46 5.6371 5 5.1010 5.2040 5.3091 5.4163 5.5256 5.7507 5.8666 5.9847 6.1051 5 6 6.1520 6.3081 6.4684 6.8019 6.9753 7.1533 7.3359 7.5233 7.7156 6 6.6330 7.8983 7 72135 7.4343 7.6625 8.1420 8.3938 8.6540 8.9228 9.2004 9.4872 7 8 8.2857 8.5830 8.8923 9.2142 9.5491 9.8975 10.2598 10.6366 11.0285 11.4359 8 9 9.3685 9.7546 10.1591 10.5828 11.0266 12.4876 9 13.5795 15.9374 10 10.4622 10.9497 11.4639 12.0061 12.5779 13.0210 15.1929 17.5603 14-4866 16.6455 10 11 11.5668 12.1687 12.8078 13.4864 18.5312 11 14.2068 15.9171 12 12.6825 13.4121 14.1920 21.3843 12 13 14.6803 13 13.8093 14.9474 14 15.9739 14 15.6178 17.0863 18.5989 20. 1569 15 16.0969 15 17.2934 18.6393 6.3528 6.7424 8.1152 8.7537 10.0890 11.0668 12.2997 13.7268 14.7757 16.7858 17.5487 20.3037 20.6546 24.3493 24.1331 29.0017 28.0291 34.3519 32.3926 40.5047 37.2797 47.5804 42.7533 55.7175 48.8837 65.0751 55.7497 75.8364 63.4397 88.2118 72.0524 102.4436 133.3339 212.7930 241.3327 434.7451 431.6635 881.1702 767.0914 1.779 0903 16 17.2579 15.0258 16.6268 18.2919 20.0236 21.8245 23.6975 25.6454 27 6712 29.7781 41.6459 16 11.4913 11.9780 13.1808 13.8164 14.9716 15.7836 16.8699 17.8885 18.8821 20.1406 21.0151 22.5505 23 2760 25.1290 25.6725 27.8881 28.2129 30.8402 30.9057 33.9990 33.7600 37.3790 36.7856 40.9955 54 8645 63.2490 79.0582 94.4608 111.4348 1382369 154.7620 199.6351 17 17 18.4304 19.6147 20.0121 21.4123 22.8406 21.7616 23.4144 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 30.5390 33.0660 47.7271 66.4388 90.3203 120.7998 18 18.9771 20.1407 21.4953 22.9534 24 2149 26.0192 27.1521 29.3609 30.3243 33.0034 33.7502 36.9737 37.4502 41.3013 41.4463 46.0185 45.7620 51.1601 73.1059 84.7009 113.2832 | 136,3075 1723168 215.7108 259.0565 337.8824 24.5227 27.9750 31.7725 35.9497 40.5447 45.5992 51.1591 57 2750 98.3471 164 4940 18 19 20.8109 25.1169 19 20 22.0190 28.2432 24.2974 32.0303 26.8704 36.4593 475754 20 25 25 30 40.5681 30 34.7849 41.6603 48.8864 56.0849 73.6522 35 271.0244 35 49.9945 60.4020 60.4621 75.4013 40 95.0255 442 5926 40 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4,000 per vear for o vears assuming an annual interest rate of 8%? For in = 6, i = 8%), the FV factor is 7.3359 $4,000 per year for 6 years accumulates to $29,343.60 (S4,000 7.3359)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Intermediate Accounting Volume 2

Authors: Hanlon, Hodder, Nelson, Roulstone, Dragoo

2nd Edition

1618533134, 9781618533357

More Books

Students also viewed these Accounting questions

Question

Explain the various techniques of Management Development.

Answered: 1 week ago