Answered step by step
Verified Expert Solution
Link Copied!
Question
1 Approved Answer

please assist in implementing the included functions. import utils import pilots import os.path # WEATHER FUNCTIONS def bad_visibility(visibility,minimum): Returns True if

please assist in implementing the included functions.

 


import utils
import pilots
import os.path


# WEATHER FUNCTIONS
def bad_visibility(visibility,minimum):
   """
   Returns True if the visibility measurement violates the minimum, False otherwise
   
   A valid visibility measurement is EITHER the string 'unavailable', or a dictionary
   with (up to) four values: 'minimum', 'maximum',  'prevailing', and 'units'. Only
   'prevailing' and 'units' are required; the other two are optional. The units may be
   'FT' (feet) or 'SM' for (statute) miles, and explain how to interpret other three
   fields, which are all floats.
   
   This function should compare ths visibility 'minimum' (if it exists) against the
   minimum parameter. Else it compares the 'prevailing' visibility. This function returns
   True if minimum is more than the measurement. If the visibility is 'unavailable',
   then this function returns True (indicating bad record keeping).
   
   Example: Suppose we have the following visibility measurement.
       
       {
           "prevailing": 21120.0,
           "minimum": 1400.0,
           "maximum": 21120.0,
           "units": "FT"
       }
   
   Given the above measurement, this function returns True if visibility is 0.25 (miles)
   and False if it is 1.
   
   Parameter visibility: The visibility information
   Precondition: visibility is a valid visibility measurement, as described above.
   (e.g. either a dictionary or the string 'unavailable')
   
   Parameter minimum: The minimum allowed visibility (in statute miles)
   Precondition: minimum is a float or int
   """
   pass                    # Implement this function
   if(type(visibility) is str):
       if(visibility == 'unavailable'):
           return True
   else:
       if("minimum" in visibility.keys()):
           if (visibility["units"]=="FT"):
               visibility["minimum"] /= 5280
           
           return minimum < visibility["minimum"]
       
       else:
           if(visibility["units"] == "FT"):
               visibility["prevailing"] /= 5280

           return minimum < visibility["prevailing"]
   

   

     
   


def bad_winds(winds,maxwind,maxcross):
   """
   Returns True if the wind measurement violates the maximums, False otherwise
   
   A valid wind measurement is EITHER the string 'calm', the string 'unavailable' or
   a dictionary with (up to) four values: 'speed', 'crosswind', 'gusts', and 'units'.
   Only 'speed' and 'units' are required if it is a dictionary; the other two are
   optional. The units are either be 'KT' (knots) or 'MPS' (meters per second), and
   explain how to interpret other three fields, which are all floats.
   
   This function should compare 'speed' or 'gusts' against the maxwind parameter
   (whichever is worse) and 'crosswind' against the maxcross. If either measurement is greater
   than the allowed maximum, this function returns True.
   
   If the winds are 'calm', then this function always returns False. If the winds are
   'unavailable', then this function returns True (indicating bad record keeping).
   
   For conversion information, 1 MPS is roughly 1.94384 knots.
   
   Example: Suppose we have the following wind measurement.
       
       {
           "speed": 12.0,
           "crosswind": 10.0,
           "gusts": 18.0,
           "units": "KT"
       }
   
   Given the above measurement, this function returns True if maxwind is 15 or maxcross is 5.
   If both maxwind is 20 and maxcross is 10, it returns False.  (If 'units' were 'MPS'
   it would be false in both cases).
   
   Parameter winds: The wind speed information
   Precondition: winds is a valid wind measurement, as described above.
   (e.g. either a dictionary, the string 'calm', or the string 'unavailable')
   
   Parameter maxwind: The maximum allowable wind speed (in knots)
   Precondition: maxwind is a float or int
   
   Parameter maxcross: The maximum allowable crosswind speed (in knots)
   Precondition: maxcross is a float or int
   """
   pass                    # Implement this function


def bad_ceiling(ceiling,minimum):
   """
   Returns True if the ceiling measurement violates the minimum, False otherwise
   
   A valid ceiling measurement is EITHER the string 'clear', the string 'unavailable',
   or a list of cloud layer measurements. A cloud layer measurement is a dictionary with
   three required keys: 'type', 'height', and 'units'.  Type is one of 'a few',
   'scattered', 'broken', 'overcast', or 'indefinite ceiling'. The value 'units' must
   be 'FT', and specifies the units for the float associated with 'height'.
   
   If the ceiling is 'clear', then this function always returns False. If the ceiling
   is 'unavailable', then this function returns True (indicating bad record keeping).
   Otherwise, it compares the minimum allowed ceiling against the lowest cloud layer
   that is either 'broken', 'overcast', or 'indefinite ceiling'.
   
   Example: Suppose we have the following ceiling measurement.
       
       [
           {
               "cover": "clouds",
               "type": "scattered",
               "height": 700.0,
               "units": "FT"
           },
           {
               "type": "overcast",
               "height": 1200.0,
               "units": "FT"
           }
       ]
   
   Given the above measurement, this function returns True if minimum is 2000,
   but False if it is 1000.
   
   Parameter ceiling: The ceiling information
   Precondition: ceiling is a valid ceiling measurement, as described above.
   (e.g. either a dictionary, the string 'clear', or the string 'unavailable')
       
   Parameter minimum: The minimum allowed ceiling (in feet)
   Precondition: minimum is a float or int
   """
   pass                    # Implement this function


def get_weather_report(takeoff,weather):
   """
   Returns the most recent weather report at or before take-off.
   
   The weather is a dictionary whose keys are ISO formatted timestamps and whose values
   are weather reports.  For example, here is an example of a (small portion of) a
   weather dictionary:
       
       {
           "2017-04-21T08:00:00-04:00": {
               "visibility": {
               "prevailing": 10.0,
               "units": "SM"
           },
           "wind": {
               "speed": 13.0,
               "crosswind": 2.0,
               "units": "KT"
           },
           "temperature": {
               "value": 13.9,
               "units": "C"
           },
           "sky": [
               {
                   "cover": "clouds",
                   "type": "broken",
                   "height": 700.0,
                   "units": "FT"
               }
           ],
           "code": "201704211056Z"
       },
       "2017-04-21T07:00:00-04:00": {
           "visibility": {
               "prevailing": 10.0,
               "units": "SM"
           },
           "wind": {
               "speed": 13.0,
               "crosswind": 2.0,
               "units": "KT"
           },
           "temperature": {
               "value": 13.9,
               "units": "C"
           },
           "sky": [
               {
                   "type": "overcast",
                   "height": 700.0,
                   "units": "FT"
               }
           ],
           "code": "201704210956Z"
       }
       ...
   },
   
   If there is a report whose timestamp matches the ISO representation of takeoff,
   this function uses that report.  Otherwise it searches the dictionary for the most
   recent report before (but not equal to) takeoff.  If there is no such report, it
   returns None.
   
   Example: If takeoff was as 8 am on April 21, 2017 (Eastern), this function returns
   the value for key '2017-04-21T08:00:00-04:00'.  If there is no additional report at
   9 am, a 9 am takeoff would use this value as well.
   
   Parameter takeoff: The takeoff time
   Precondition: takeoff is a datetime object
   
   Paramater weather: The weather report dictionary
   Precondition: weather is a dictionary formatted as described above
   """
   # HINT: Looping through the dictionary is VERY slow because it is so large
   # You should convert the takeoff time to an ISO string and search for that first.
   # Only loop through the dictionary as a back-up if that fails.
   
   # Search for time in dictionary
   # As fall back, find the closest time before takeoff
   pass


def get_weather_violation(weather,minimums):
   """
   Returns a string representing the type of weather violation (empty string if flight is ok)
   
   The weather reading is a dictionary with the keys: 'visibility', 'wind', and 'sky'.
   These correspond to a visibility, wind, and ceiling measurement, respectively. It
   may have other keys as well, but these can be ignored. For example, this is a possible
   weather value:
       
       {
           "visibility": {
               "prevailing": 21120.0,
               "minimum": 1400.0,
               "maximum": 21120.0,
               "units": "FT"
           },
           "wind": {
               "speed": 12.0,
               "crosswind": 3.0,
               "gusts": 18.0,
               "units": "KT"
           },
           "temperature": {
               "value": -15.6,
               "units": "C"
           },
           "sky": [
               {
                   "cover": "clouds",
                   "type": "broken",
                   "height": 2100.0,
                   "units": "FT"
               }
           ],
           "weather": [
               "light snow"
           ]
       }
   
   The minimums is a list of the four minimums ceiling, visibility, and max windspeed,
   and max crosswind speed in that order.  Ceiling is in feet, visibility is in statute
   miles, max wind and cross wind speed are both in knots. For example,
   [3000.0,10.0,20.0,8.0] is a potential minimums list.
   
   This function uses bad_visibility, bad_winds, and bad_ceiling as helpers. It returns
   'Visibility' if the only problem is bad visibility, 'Winds' if the only problem is
   wind, and 'Ceiling' if the only problem is the ceiling.  If there are multiple
   problems, it returns 'Weather', It returns 'Unknown' if no weather reading is
   available (e.g. weather is None).  Finally, it returns '' (the empty string) if
   the weather is fine and there are no violations.
   
   Parameter weather: The weather measure
   Precondition: weather is dictionary containing a visibility, wind, and ceiling measurement,
   or None if no weather reading is available.
   
   Parameter minimums: The safety minimums for ceiling, visibility, wind, and crosswind
   Precondition: minimums is a list of four floats
   """
   pass                    # Implement this function


# FILES TO AUDIT
# Sunrise and sunset
DAYCYCLE = 'daycycle.json'
# Hourly weather observations
WEATHER  = 'weather.json'
# The list of insurance-mandated minimums
MINIMUMS = 'minimums.csv'
# The list of all registered students in the flight school
STUDENTS = 'students.csv'
# The list of all take-offs (and landings)
LESSONS  = 'lessons.csv'


def list_weather_violations(directory):
   """
   Returns the (annotated) list of flight reservations that violate weather minimums.
   
   This function reads the data files in the given directory (the data files are all
   identified by the constants defined above in this module).  It loops through the
   list of flight lessons (in lessons.csv), identifying those takeoffs for which
   get_weather_violation() is not the empty string.
   
   This function returns a list that contains a copy of each violating lesson, together
   with the violation appended to the lesson.
   
   Example: Suppose that the lessons
       
       S00687  548QR  I061  2017-01-08T14:00:00-05:00  2017-01-08T16:00:00-05:00  VFR  Pattern
       S00758  548QR  I072  2017-01-08T09:00:00-05:00  2017-01-08T11:00:00-05:00  VFR  Pattern
       S00971  426JQ  I072  2017-01-12T13:00:00-05:00  2017-01-12T15:00:00-05:00  VFR  Pattern
   
   violate for reasons of 'Winds', 'Visibility', and 'Ceiling', respectively (and are the
   only violations).  Then this function will return the 2d list
       
       [[S00687, 548QR, I061, 2017-01-08T14:00:00-05:00, 2017-01-08T16:00:00-05:00, VFR, Pattern, Winds],
        [S00758, 548QR, I072, 2017-01-08T09:00:00-05:00, 2017-01-08T11:00:00-05:00, VFR, Pattern, Visibility],
        [S00971, 426JQ, I072, 2017-01-12T13:00:00-05:00, 2017-01-12T15:00:00-05:00, VFR, Pattern, Ceiling]]
   
   REMEMBER: VFR flights are subject to minimums with VMC in the row while IFR flights
   are subject to minimums with IMC in the row.  The examples above are all VFR flights.
   If we changed the second lesson to
   
       S00758, 548QR, I072, 2017-01-08T09:00:00-05:00, 2017-01-08T11:00:00-05:00, IFR, Pattern
   
   then it is possible it is no longer a visibility violation because it is subject to
   a different set of minimums.
   
   Parameter directory: The directory of files to audit
   Precondition: directory is the name of a directory containing the files 'daycycle.json',
   'weather.json', 'minimums.csv', 'students.csv', and 'lessons.csv'
   """
   # Load in all of the files
   
   # For each of the lessons
       # Get the takeoff time
       # Get the pilot credentials
       # Get the pilot minimums
       # Get the weather conditions
       # Check for a violation and add to result if so
   pass

 

Step by Step Solution

There are 3 Steps involved in it

Step: 1

Certainly Lets address the implementation of the specified functions one by one These functions analyze weather conditions based on given criteria and ... blur-text-image
Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Business Statistics A Decision Making Approach

Authors: David F. Groebner, Patrick W. Shannon, Phillip C. Fry

9th Edition

013302184X, 978-0133021844

More Books

Students explore these related Programming questions