Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

***********************************************Please Convert this in C++ or Java**************************** %matplotlib inline from __future__ import division import numpy as np from numpy.random import rand import matplotlib.pyplot as plt

***********************************************Please Convert this in C++ or Java****************************

%matplotlib inline from __future__ import division import numpy as np from numpy.random import rand import matplotlib.pyplot as plt #---------------------------------------------------------------------- ## BLOCK OF FUNCTIONS USED IN THE MAIN CODE #---------------------------------------------------------------------- def initialstate(N): ''' generates a random spin configuration for initial condition''' state = 2*np.random.randint(2, size=(N,N))-1 return state

def mcmove(config, beta): '''Monte Carlo move using Metropolis algorithm ''' for i in range(N): for j in range(N): a = np.random.randint(0, N) b = np.random.randint(0, N) s = config[a, b] nb = config[(a+1)%N,b] + config[a,(b+1)%N] + config[(a-1)%N,b] + config[a,(b-1)%N] cost = 2*s*nb if cost < 0: s *= -1 elif rand() < np.exp(-cost*beta): s *= -1 config[a, b] = s return config

def calcEnergy(config): '''Energy of a given configuration''' energy = 0 for i in range(len(config)): for j in range(len(config)): S = config[i,j] nb = config[(i+1)%N, j] + config[i,(j+1)%N] + config[(i-1)%N, j] + config[i,(j-1)%N] energy += -nb*S return energy/4.

def calcMag(config): '''Magnetization of a given configuration''' mag = np.sum(config) return mag ## change these parameters for a smaller (faster) simulation nt = 88 # number of temperature points N = 16 # size of the lattice, N x N eqSteps = 1024 # number of MC sweeps for equilibration mcSteps = 1024 # number of MC sweeps for calculation

T = np.linspace(1.53, 3.28, nt); E,M,C,X = np.zeros(nt), np.zeros(nt), np.zeros(nt), np.zeros(nt) n1, n2 = 1.0/(mcSteps*N*N), 1.0/(mcSteps*mcSteps*N*N) # divide by number of samples, and by system size to get intensive values #---------------------------------------------------------------------- # MAIN PART OF THE CODE #---------------------------------------------------------------------- for tt in range(nt): E1 = M1 = E2 = M2 = 0 config = initialstate(N) iT=1.0/T[tt]; iT2=iT*iT; for i in range(eqSteps): # equilibrate mcmove(config, iT) # Monte Carlo moves

for i in range(mcSteps): mcmove(config, iT) Ene = calcEnergy(config) # calculate the energy Mag = calcMag(config) # calculate the magnetisation

E1 = E1 + Ene M1 = M1 + Mag M2 = M2 + Mag*Mag E2 = E2 + Ene*Ene

E[tt] = n1*E1 M[tt] = n1*M1 C[tt] = (n1*E2 - n2*E1*E1)*iT2 X[tt] = (n1*M2 - n2*M1*M1)*iT f = plt.figure(figsize=(18, 10)); # plot the calculated values

sp = f.add_subplot(2, 2, 1 ); plt.scatter(T, E, s=50, marker='o', color='IndianRed') plt.xlabel("Temperature (T)", fontsize=20); plt.ylabel("Energy ", fontsize=20); plt.axis('tight');

sp = f.add_subplot(2, 2, 2 ); plt.scatter(T, abs(M), s=50, marker='o', color='RoyalBlue') plt.xlabel("Temperature (T)", fontsize=20); plt.ylabel("Magnetization ", fontsize=20); plt.axis('tight');

sp = f.add_subplot(2, 2, 3 ); plt.scatter(T, C, s=50, marker='o', color='IndianRed') plt.xlabel("Temperature (T)", fontsize=20); plt.ylabel("Specific Heat ", fontsize=20); plt.axis('tight');

sp = f.add_subplot(2, 2, 4 ); plt.scatter(T, X, s=50, marker='o', color='RoyalBlue') plt.xlabel("Temperature (T)", fontsize=20); plt.ylabel("Susceptibility", fontsize=20); plt.axis('tight');

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database Design And Implementation

Authors: Edward Sciore

2nd Edition

3030338355, 978-3030338350

More Books

Students also viewed these Databases questions