Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Please do in python no derivativation needed. Just code Consider the time-delay stochastic problem considered in lecture, where a random process,is a zero-mean stationary process

Please do in python no derivativation needed. Just code image text in transcribed
Consider the time-delay stochastic problem considered in lecture, where a random process,is a zero-mean stationary process representing a transmitted signal, and y(is the (attenuated) received signal at a time delay t. There is additional noise generated in the detector, hat is stationary, zero mean, and uncorrelated with ,).The relationship between these random processes is given by where is the attenuation factor. Derive an expression for the autocorrelation function forv,()Discuss. Now consider that x,() is a sine wave process, with fixed ampitude A and random phase constant 0, and n,) is noise process. Write a program that creates sample records for y,(1, where the noise is modeled in discrete time by choosing a random number over the uniform distribuion UB.B) where B is an adjustable parameter. For different values of B plot your noisy data for the sample records of y, their autocorrelation function, and the autocorrelation function's Fourier Transform. Consider the cases where the amplitude of the noise is much less, similar to, and much greater than the received attenuated signal. Discuss Consider the time-delay stochastic problem considered in lecture, where a random process,is a zero-mean stationary process representing a transmitted signal, and y(is the (attenuated) received signal at a time delay t. There is additional noise generated in the detector, hat is stationary, zero mean, and uncorrelated with ,).The relationship between these random processes is given by where is the attenuation factor. Derive an expression for the autocorrelation function forv,()Discuss. Now consider that x,() is a sine wave process, with fixed ampitude A and random phase constant 0, and n,) is noise process. Write a program that creates sample records for y,(1, where the noise is modeled in discrete time by choosing a random number over the uniform distribuion UB.B) where B is an adjustable parameter. For different values of B plot your noisy data for the sample records of y, their autocorrelation function, and the autocorrelation function's Fourier Transform. Consider the cases where the amplitude of the noise is much less, similar to, and much greater than the received attenuated signal. Discuss

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Object Databases The Essentials

Authors: Mary E. S. Loomis

1st Edition

020156341X, 978-0201563412

More Books

Students also viewed these Databases questions