Please help me with this NPV and profitability index question
Exercise 11-10 NPV and profitability index LO P3 Following is information on two alternative investments being considered by Jolee Company. The company requires a 12% return from its investments. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s} from the tables provided.} Project A Project B Initial investment $(183,325) $(146,960) Expected net cash flows in year: 1 41,000 29,000 2 50,000 49,000 3 79,295 56,000 4 96,400 75,000 5 71,000 25,000 a. For each alternative project compute the net present value. b. For each alternative project compute the protability index. If the company can only select one project, which should it choose? Required A Required B For each alternative project compute the net present value. Initial Investment 133,325 I l .. II UlvliCDMb \fRequired A Required B choose? For each alternative project compute the profitability index. If the company can only select one project, which should it Profitability Index Choose Numerator: 1 Choose Denominator: = Profitability Index = Profitability index Project A Project B If the company can only select one project, which should it choose? TABLE B. 1* Present Value of 1 p = 1/(1 +i ) Rate Perlods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% WN - 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 0.9346 0.9174 0.9091 0.8929 0.8696 0.9803 0.9612 0.9426 0.9246 0.9070 0.8900 0.8734 0.8573 0.8417 0.8264 0.7972 0.7561 0.9706 0.9423 0.9151 0.8638 0.8396 0.8163 0.7938 0.7722 0.7513 0.7118 0.6575 0.9610 0.9238 0.8885 0.8548 0.8227 0.7921 0.7629 0.7350 0.7084 0.6830 0.6355 0.5718 0.9515 0.9057 0.8626 0.8219 0.7835 0.7473 0.7130 0.6806 0.6499 0.6209 0.5674 0.4972 0.9420 0.8880 0.8375 0.7903 0.7462 0.7050 0.6302 0.5963 0.5645 0.5066 0.4323 0.9327 0.8706 0.8131 0.7107 0.6651 0.6227 0.5835 0.5470 0.5132 0.4523 0.3759 0.9235 0.8535 0.7894 0.6768 0.6274 0.5820 0.5403 0.5019 0.4665 0.4039 0.3269 0.9143 0.8368 0.6446 0.5919 0.5439 0.5002 0.4604 0.4241 0.3606 0.2843 10 0.7441 0.6756 0.6139 0.5584 0.5083 0.3855 11 0.8963 0.8043 0.7224 0.6496 0.5268 0.4751 0.4289 0.3875 0.3505 0.2875 0.2149 12 0.8874 0.7885 0.7014 0.6246 0.5568 0.4970 0.4440 0.3971 0.3555 0.3186 0.2567 0.1869 13 0.8787 0.7730 0.6810 0.6006 0.5303 0.4688 0.4150 0.3262 0.2292 14 0.8700 0.7579 0.6611 0.5051 0.4423 0.3878 0.3405 0.2992 0.2633 0.2046 0.1413 15 0.8613 0.7430 0.6419 0.5553 0.4810 0.4173 0.3624 0.3152 0.2745 0.2394 0.1827 0.1229 16 0.8528 0.7284 0.6232 0.5339 0.4581 0.3936 0.2919 0.2519 0.2176 0.1631 0.1069 17 0.8444 0.7142 0.6050 0.5134 0.4363 0.3166 0.2703 0.2311 0.1978 0.1456 18 0.0929 0.8360 0.7002 0.5874 0.4155 0.3503 0.2959 0.2502 0.2120 0.1799 0.1300 0.0808 19 0.8277 0.6864 0.5703 0.4746 0.3957 0.3305 0.2765 0.2317 0. 1945 0.1635 0.0703 20 0.6730 0.5537 0.4564 0.3769 0.3118 0.2584 0.2145 0. 1784 0.1486 0.1037 25 0.7798 0.6095 0.4776 0.3751 0.2953 0.2330 0.1842 0.1460 0.1160 0.0923 0.0588 0.0304 30 0.7419 0.5521 0.4120 0.3083 0.2314 0.1741 0.1314 0.0994 0.0754 0.0573 0.0334 0.0151 35 0.7059 0.5000 0.3554 0.2534 0.1813 0.1301 0.0937 0.0676 0.0490 0.0356 40 0.0189 0.0075 0.6717 0.4529 0.3066 0.2083 0.1420 0.0972 0.0668 0.0460 0.0318 0.0221 0.0107 0.0037 * Used to compute the present value of a known future amount. For example: How much would you need to invest today at 10% compounded semiannually to accumulate $5,000 in 6 years from today? Using the factors of n = 12 and i= 5% (12 semiannual periods and a semiannual rate of 5%), the factor is 0.5568. You would need to invest $2,784 today ($5,000 x 0.5568).TABLE B.21 Future Value of 1 f = (1 +i)" Rate Perlods 1% 2% 3% 4% 5% 6% 8% 9% 10% 12% 15% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0100 1.0300 1.0400 1.0500 1.0600 1.0800 1.0900 1.1000 1.1200 1.1500 1.0201 1.0404 1.0609 1.0816 1.1025 1.1236 1.1449 1.1664 1.1881 1.2100 1.2544 1.3225 1.0303 1.0612 1.0927 1.1249 1.1576 1.1910 1.2250 1.2597 1.2950 1.3310 1.4049 1.5209 1.0406 1.1255 1.1699 1.2155 1.2625 1.3108 1.3605 1.4116 1.4641 1.5735 1.7490 1.1041 1.1593 1.2167 1.2763 1.3382 1.4026 1.4693 1.5386 1.6105 1.7623 2.0114 1.0615 1.1262 1.1941 1.2653 1.5007 1.6771 1.7716 1.9738 2.3131 1.0721 1.1487 1.3159 1.4071 1.5036 1.6058 1.7138 1.8280 1.9487 2.6600 1.0829 1.1717 1.2668 1.3686 1.4775 1.5938 1.7182 1.8509 1.9926 2.1436 2.4760 3.0590 1.0937 1.1951 1.3048 1.4233 1.5513 1.6895 1.9990 2.1719 2.3579 2.7731 3.5179 10 1.1046 1.2190 1.3439 1.4802 1.6289 1.9672 2.1589 2.3674 2.5937 3.1058 4.0456 11 1.1157 1.2434 1.5395 1.8983 2. 1049 2.5804 3.4785 4.6524 12 1.1268 1.2682 1.4258 1.6010 1.7959 2.0122 2.5182 2.8127 3.1384 3.8960 13 5.3503 1.1381 1.2936 1.4685 1.6651 1.8856 2.1329 2.4098 2.7196 3.0658 3.4523 4.3635 6.1528 14 1.1495 1.3195 1.5126 1.7317 1.9799 2.2609 2.5785 2.9372 3.3417 3.7975 4.8871 7.0757 15 1.3459 1.5580 1.8009 2.0789 2.3966 3.1722 4.1772 5.4736 8.1371 16 1.1726 1.6047 1.8730 2.1829 2.5404 2.9522 3.4259 3.9703 4.5950 6.1304 9.3576 17 1.1843 1.4002 1.6528 1.9479 2.2920 2.6928 3. 1588 3.7000 4.3276 5.0545 6.8660 1.1961 10.7613 18 1.4282 1.7024 2.0258 2.4066 2.8543 3.3799 3.9960 4.7171 5.5599 7.6900 12.3755 19 1.2081 1.4568 1.7535 2.1068 2.5270 3.0256 3.6165 4.3157 5.1417 6.1159 8.6128 14.2318 20 1.2202 1.8061 2.1911 2.6533 4.6610 5.6044 16.3665 25 1.6406 2.0938 2.6658 3.3864 4.2919 5.4274 6.8485 8.6231 10.8347 17.0001 32.9190 30 1.3478 1.8114 2.4273 3.2434 4.3219 5.7435 10.0627 13.2677 17.4494 35 29.9599 66.2118 2.8139 3.9461 5.5160 7.6861 10.6766 20.4140 28. 1024 52.7996 133.1755 40 1.4889 3.2620 4.8010 7.0400 10.2857 14.9745 21.7245 31.4094 45.2593 93.0510 267.8635 Used to compute the future value of a known present amount. For example: What is the accumulated value of $3,000 invested today at 8% compounded quarterly for 5 years? Using the factors of n = 20 and i = 2% (20 quarterly periods and a quarterly interest rate of 2%), the factor is 1.4859. The accumulated value is $4,457.70 ($3,000 x 1.4859).TABLE B.3+ (1 + i)" Present Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 10 0O VOUT A WN - 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 0.9346 0.9259 0.9174 0.9091 0.8929 0.8696 1.9704 1.9416 1.9135 1.8861 1.8594 1.8334 1.8080 1.7833 1.7355 1.6901 1.6257 2.8839 2.8286 2.7751 2.7232 2.6730 2.6243 2.5771 2.5313 2.4869 2.4018 2.2832 3.9020 3.8077 3.7171 3.6299 3.5460 3.4651 3.3872 3.2397 3.1699 3.0373 2.8550 4.7135 4.5797 4.4518 4.3295 4.1002 3.8897 3.7908 3.6048 3.3522 5.7955 5.6014 5.4172 5.2421 5.0757 4.9173 4.7665 4.6229 4.4859 4.3553 4.1114 3.7845 6.7282 6.4720 6.2303 6.0021 5.7864 5.5824 5.3893 5.2064 5.0330 4.5638 4.1604 7.6517 7.3255 7.0197 6.7327 6.4632 6.2098 5.9713 5.7466 5.5348 5.3349 4.9676 4.4873 8.5660 8.1622 7.7861 7.4353 7.1078 6.8017 6.5152 6.2469 5.9952 5.7590 5.3282 4.7716 10 9.4713 8.9826 8.5302 8.1109 7.3601 7.0236 6.7101 6.4177 6.1446 5.6502 5.0188 11 10.3676 9.7868 9.2526 8.7605 8.3064 7.8869 7.4987 7.1390 6.8052 6.4951 5.9377 5.2337 11.2551 10.5753 9.9540 9.3851 8.8633 7.9427 7.5361 6.8137 6.1944 5.4206 13 11.3484 10.6350 9.9856 9.3936 8.8527 8.3577 7.9038 7.4869 7.1034 6.4235 5.5831 14 13.0037 12.1062 11.2961 10.5631 9.8986 9.2950 8.7455 8.2442 7.7862 7.3667 6.6282 5.7245 15 13.8651 12.8493 11.9379 10.3797 9.7122 9.1079 8.5595 8.0607 7.6061 6.8109 5.8474 16 14.7179 13.5777 12.5611 11.6523 10.8378 10.1059 9.4466 8.8514 8.3126 7.8237 6.9740 5.9542 17 15.5623 14.2919 13.1661 12.1657 11.2741 10.4773 9.7632 9.1216 8.5436 8.0216 7.1196 6.0472 18 14.9920 13.7535 12.6593 11.6896 10.8276 10.0591 9.3719 8.7556 8.2014 7.2497 6.1280 19 17.2260 15.6785 14.3238 13.1339 12.0853 11.1581 10.3356 9.6036 8.9501 8.3649 7.3658 20 18.0456 16.3514 14.8775 12.4622 11.4699 10.5940 9.8181 9.1285 8.5136 7.4694 6.2593 25 22.0232 19.5235 17.4131 14.0939 12.7834 11.6536 10.6748 9.8226 9.0770 7.8431 6.4641 30 25.8077 22.3965 19.6004 17.2920 15.3725 13.7648 12.4090 11.2578 10.2737 9.4269 8.0552 6.5660 35 29.4086 24.9986 18.6646 16.3742 12.9477 11.6546 10.5668 9.6442 8.1755 6.6166 40 32.8347 27.3555 23.1148 19.7928 15.0463 11.9246 10.7574 9.7791 8.2438 6.6418 Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2,000 per year for 10 years assuming an annual interest rate of 9%. For (n = 10, i= 9%), the PV factor is 6.4177. $2,000 per year for 10 years is the equivalent of $12,835 today ($2,000 x 6.4177)TABLE B.49 f = [(1 + i)" - 1yi Future Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 6 0 NO UTA WN - 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.0100 2.0200 2.0300 2.0400 2.0500 2.0600 2.0700 2.0800 2.0900 2.1000 2.1200 2.1500 3.0301 3.0604 3.0909 3.1216 3.1525 3.1836 3.2149 3.2464 3.2781 3.3100 3.3744 3.4725 4.0604 4.1216 4.2465 4.3101 4.3746 4.4399 4.6410 4.7793 4.9934 5.1010 5.2040 5.3091 5.4163 5.5256 5.6371 5.7507 5.8666 5.9847 6.1051 6.3528 6.7424 6.3081 6.4684 6.6330 6.8019 6.9753 7.1533 7.3359 7.5233 7.7156 8.1152 8.7537 7.6625 7.8983 8.1420 8.3938 8.6540 8.9228 9.2004 9.4872 10.0890 11.0668 8.2857 8.5830 8.8923 9.2142 9.5491 9.8975 10.6366 11.0285 11.4359 12.2997 13.7268 9.7546 10.1591 10.5828 11.0266 11.4913 11.9780 12.4876 13.0210 13.5795 14.7757 16.7858 10 10.4622 10.9497 11.4639 12.0061 12.5779 13.1808 13.8164 14.4866 15.1929 15.9374 17.5487 20.3037 11 11.5668 12.1687 12.8078 14.2068 14.9716 15.7836 16.6455 17.5603 18.5312 20.6546 24.3493 12 12.6825 13.4121 14.1920 15.0258 15.9171 16.8699 18.9771 20.1407 21.3843 24.1331 29.0017 13 13.8093 14.6803 15.6178 16.6268 17.7130 18.8821 20.1406 21.4953 22.9534 28.0291 34.3519 14 14.9474 17.0863 18.2919 19.5986 21.0151 22.5505 24.2149 26.0192 27.9750 32.3926 40.5047 15 16.0969 17.2934 18.5989 20.0236 21.5786 23.2760 25.1290 27.1521 29.3609 31.7725 37.2797 47.5804 16 20.1569 21.8245 23.6575 25.6725 27.8881 30.3243 33.0034 42.7533 55.7175 17 18.4304 20.0121 21.7616 23.6975 25.8404 28.2129 30.8402 33.7502 36.9737 40.5447 48.8837 65.0751 18 19.6147 21.4123 23.4144 25.6454 28.1324 30.9057 33.9990 37.4502 41.3013 45.5992 55.7497 75.8364 19 20.8109 22.8406 25.1169 27.6712 30.5390 37.3790 41.4463 46.0185 63.4397 88.2118 20 22.0190 26.8704 33.0660 36.7856 40.9955 45.7620 51.1601 57.2750 72.0524 102.4436 25 32.0303 36.4593 41.6459 47.7271 54.8645 63.2490 73.1059 84.7009 98.3471 133.3339 212.7930 30 34.7849 40.5681 47.5754 56.0849 66.4388 79.0582 94.4608 113.2832 136.3075 164.4940 241.3327 434.7451 35 41.6603 49.9945 60.4621 73.6522 111.4348 138.2369 172.3168 215.7108 271.0244 431.6635 881.1702 40 48.8864 60.4020 75.4013 95.0255 120.7998 154.7620 199.6351 259.0565 337.8824 442.5926 767.0914 1,779.0903 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4,000 per year for 6 years assuming an annual interest rate of 8%. For (n = 6, i= 8%), the FV factor is 7.3359. $4,000 per year for 6 years accumulates to $29,343.60 ($4,000 x 7.3359)