Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Please help me with this problem Suppose f(x)->- and g(x)-> +- as x->+inf. find example of functions f and g with there properties and such

Please help me with this problem

Suppose f(x)->- and g(x)-> +- as x->+inf. find example of functions f and g with there properties and such that:

image text in transcribedimage text in transcribed
8. Suppose f (x) - 0 and g(x) - too as x - too. Find examples of functions f and g with these properties and such that: a. lim If (x) . g(x)] = too x- + 00 Prover (choose the functions): Explainer (check the limits): f (x) = lim f (x) = x - + 00 g (x) = lim g(x) = x- +00 f ( x) . g(x) = lim [f (x) . g(x)] = x -+ + 00 b . x - + 00 lim If (x) . g(x)] = -0o Prover (choose the functions): Explainer (check the limits): f (x) = lim f (x) = x - + 0o g (x) = lim g(x) = x - + 00 f (x) . g(x) = lim [f (x) . g(x)] = x - + 00 c. lim [f (x) . g(x)] = A, where A is any arbitrary real number that you choose yourself. Prover (choose the functions): Explainer (check the limits): f (x ) = lim f (x) = x - + 00 g (x ) = lim g(x) = x - + 00 f (x) . g(x) = lim [f (x) . g(x)] = x - + 00d. Think carefully about what the symbols co, -co and 0 represent in the statements f (x) - 0 and g(x) - too. (Hint: Are they fixed values, or do they describe a particular behavior?) Now use your work from parts a-c to explain why 0 . too is an indeterminate form. e. Thinking carefully again about the meaning of the symbols co and -co, explain how this is different from the determinate forms too . too and a . too (where a # 0)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

A Survey of Mathematics with Applications

Authors: Allen R. Angel, Christine D. Abbott, Dennis Runde

10th edition

134112105, 134112342, 9780134112343, 9780134112268, 134112261, 978-0134112107

More Books

Students also viewed these Mathematics questions