Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Please help writing the following code in C language. I will RATE your answer . Thanks We'll develop a program crow_fly that computes the distance

Please help writing the following code in C language. I will RATE your answer .

Thanks

We'll develop a program crow_fly that computes the distance in kilometers between any two points on Earth, given their latitudes and longitudes. Here's the template:

#include

#include // for M_PI and trig functions

double dmsToRadians(double dms[3])

{

/*

* converts the values in the 3-element array `dms` (degrees,

* minutes, and seconds) to a single double value in radians and

* returns it

*

* pseudocode:

* convert dms[] into a single (fractional) degree value

* convert the degree value to radians and return that value

*/

}

void polarToCartesian(double latitude[3], double longitude[3],

double position[3])

{

/*

* converts `latitude` and `longitude` (both are 3-element --

* degrees, minutes, and seconds -- arrays) to `position`: a

* 3-element double array in Cartesian (x, y, and z) coordinates

* on the unit sphere.

*

* pseudocode:

* convert latitude to a polar angle `theta` using

* dmsToRadians()

* convert longitude to an azimuthal angle `phi` using

* dmsToRadians()

* convert `theta` and `phi` to the x, y, and z components of

* `position`

*/

}

double arcLength(double latitude0[3], double longitude0[3],

double latitude1[3], double longitude1[3])

{

/*

* computes the length (in radians) of an arc ("geodesic") on the

* unit sphere between points (longitude0, latitude0) and

* (longitude1, latitude1)

*

* pseudocode:

* convert `latitude0` and `longitude0` to `position0`

* using polarToCartesian()

* convert `latitude1` and `longitude1` to `position1`

* using polarToCartesian()

* compute the cosine of the arc using the formula below

* use the acos() (arc cosine) math function to convert the

* cosine back to an angle and return it

*/

}

double crowFly(double latitude0[3], double longitude0[3],

double latitude1[3], double longitude1[3])

{

/*

* computes and returns the distance in km from (latitude0,

* longitude0) to (latitude1, longitude1) on the Earth's surface

*

* pseudocode:

* compute the arc length from (latitude0, longitude0) to

* (latitude1, longitude1) using arcLength()

* multiply the arc length by the radius of the Earth (6378 km)

* and return that value

*/

}

int main(void)

{

double latitude0[3], longitude0[3];

double latitude1[3], longitude1[3];

printf(" from latitude (d m s): ");

scanf("%lf %lf %lf", &latitude0[0], &latitude0[1], &latitude0[2]);

printf("from longitude (d m s): ");

scanf("%lf %lf %lf", &longitude0[0], &longitude0[1], &longitude0[2]);

printf(" to latitude (d m s): ");

scanf("%lf %lf %lf", &latitude1[0], &latitude1[1], &latitude1[2]);

printf(" to longitude (d m s): ");

scanf("%lf %lf %lf", &longitude1[0], &longitude1[1], &longitude1[2]);

printf(" distance: %.1f km ",

crowFly(latitude0, longitude0, latitude1, longitude1));

return 0;

}

The code is available BELOW

The main() function is provided. You do not need to change it. There are four other functions you need to implement, as indicated in the comments. Some additional notes:

dmsToRadians()

This function takes a 3-element array containing an angle in degrees, (arc) minutes, and (arc) seconds and converts it to radians, which it returns. Remember that there are 60 seconds in a minute and 60 minutes in a degree and that there are 180 degrees in pi radians.

polarToCartesian()

This function takes a latitude[] and a longitude[], both degree-minute-second 3-arrays, and converts them to radians theta and phi, respectively. These then create the x, y, and z components (in that order) of the position[] array, using these formulae:

x = cos cos

y = cos sin

z = sin

These are all 3D coordinates on a unit sphere (a sphere of radius one).

arcLength()

This function computes the length of an arc on the unit sphere in radians. Given positions p and q (position0 and position1 in the pseudocode), the formula for the arc length is

= cos 1(pxqx + pyqy + pzqz)

crowFly()

This function returns the distance between two points (given their longitudes and latitudes) on the Earth's surface. (This is a very simple function.)

Example

Here's a typical run for the distance between Richland and Pullman:

$ crow_fly

from latitude (d m s): 46 16 47

from longitude (d m s): 119 16 53

to latitude (d m s): 46 44 0

to longitude (d m s): 117 10 0

distance: 169.7 km

---------------------------------------------------------CODE FROM LINK------------------------------------------

#include  #include  // for M_PI and trig functions double dmsToRadians(double dms[3]) { /* * converts the values in the 3-element array `dms` (degrees, * minutes, and seconds) to a single double value in radians and * returns it * * pseudocode: * convert dms[] into a single (fractional) degree value * convert the degree value to radians and return that value */ } void polarToCartesian(double latitude[3], double longitude[3], double position[3]) { /* * converts `latitude` and `longitude` (both are 3-element -- * degrees, minutes, and seconds -- arrays) to `position`: a * 3-element double array in Cartesian (x, y, and z) coordinates * on the unit sphere. * * pseudocode: * convert latitude to a polar angle `theta` using * dmsToRadians() * convert longitude to an azimuthal angle `phi` using * dmsToRadians() * convert `theta` and `phi` to the x, y, and z components of * `position` */ } double arcLength(double latitude0[3], double longitude0[3], double latitude1[3], double longitude1[3]) { /* * computes the length (in radians) of an arc ("geodesic") on the * unit sphere between points (longitude0, latitude0) and * (longitude1, latitude1) * * pseudocode: * convert `latitude0` and `longitude0` to `position0` * using polarToCartesian() * convert `latitude1` and `longitude1` to `position1` * using polarToCartesian() * compute the cosine of the arc using the formula below * use the acos() (arc cosine) math function to convert the * cosine back to an angle and return it */ } double crowFly(double latitude0[3], double longitude0[3], double latitude1[3], double longitude1[3]) { /* * computes and returns the distance in km from (latitude0, * longitude0) to (latitude1, longitude1) on the Earth's surface * * pseudocode: * compute the arc length from (latitude0, longitude0) to * (latitude1, longitude1) using arcLength() * multiply the arc length by the radius of the Earth (6378 km) * and return that value */ } int main(void) { double latitude0[3], longitude0[3]; double latitude1[3], longitude1[3]; printf(" from latitude (d m s): "); scanf("%lf %lf %lf", &latitude0[0], &latitude0[1], &latitude0[2]); printf("from longitude (d m s): "); scanf("%lf %lf %lf", &longitude0[0], &longitude0[1], &longitude0[2]); printf(" to latitude (d m s): "); scanf("%lf %lf %lf", &latitude1[0], &latitude1[1], &latitude1[2]); printf(" to longitude (d m s): "); scanf("%lf %lf %lf", &longitude1[0], &longitude1[1], &longitude1[2]); printf(" distance: %.1f km ", crowFly(latitude0, longitude0, latitude1, longitude1)); return 0; } 

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database Fundamentals Study Guide

Authors: Dr. Sergio Pisano

1st Edition

B09K1WW84J, 979-8985115307

More Books

Students also viewed these Databases questions