Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Pr1. Time Series. Written 20% Test Grade 0 The data in the table below represent the annual revenues(in billion of dollars) of McDonald's Corporation over
Pr1. Time Series. | Written 20% | |||||||||
Test Grade | 0 | |||||||||
The data in the table below represent the annual revenues(in billion of dollars) | ||||||||||
of McDonald's Corporation over the period from 1975 to 2012. | ||||||||||
A) Calculate a five-year moving average to the data (add a column to the table) | ||||||||||
Year | Coded Year | Revenues | Forecast | |||||||
1975 | 0 | 1 | ||||||||
1976 | 1 | 1.2 | ||||||||
1977 | 2 | 1.4 | ||||||||
1978 | 3 | 1.7 | ||||||||
1979 | 4 | 1.9 | ||||||||
1980 | 5 | 2.2 | 1.44 | |||||||
1981 | 6 | 2.5 | 1.68 | |||||||
1982 | 7 | 2.8 | 1.94 | |||||||
1983 | 8 | 3.1 | 2.22 | |||||||
1984 | 9 | 3.6 | 2.5 | |||||||
1985 | 10 | 3.8 | 2.84 | |||||||
1986 | 11 | 3.9 | 3.16 | |||||||
1987 | 12 | 4.9 | 3.44 | |||||||
1988 | 13 | 5.2 | 3.86 | |||||||
1989 | 14 | 5.9 | 4.28 | |||||||
1990 | 15 | 6.4 | 4.74 | |||||||
1991 | 16 | 6.7 | 5.26 | |||||||
1992 | 17 | 7 | 5.82 | |||||||
1993 | 18 | 7.4 | 6.24 | |||||||
1994 | 19 | 8.3 | 6.68 | |||||||
1995 | 20 | 9.8 | 7.16 | |||||||
1996 | 21 | 10.7 | 7.84 | |||||||
1997 | 22 | 11.4 | 8.64 | |||||||
1998 | 23 | 13.4 | 9.52 | |||||||
1999 | 24 | 14.5 | 10.72 | |||||||
2000 | 25 | 15.6 | 11.96 | |||||||
2001 | 26 | 14.9 | 13.12 | |||||||
2002 | 27 | 15.4 | 13.96 | |||||||
2003 | 28 | 17.1 | 14.76 | |||||||
2004 | 29 | 19 | 15.5 | |||||||
2005 | 30 | 20.5 | 16.4 | |||||||
2006 | 31 | 19.3 | 17.38 | |||||||
2007 | 32 | 22.4 | 18.26 | |||||||
2008 | 33 | 24.5 | 19.66 | |||||||
2009 | 34 | 23.6 | 21.14 | |||||||
2010 | 35 | 24.1 | 22.06 | |||||||
2011 | 36 | 29.5 | 22.78 | |||||||
2012 | 37 | 26.7 | 24.82 | |||||||
2013 | 25.68 | |||||||||
B) Using a smoothing coefficient of W = 0.45, exponentially smooth the series | ||||||||||
(add a column to the table, use data analysis to smooth) | ||||||||||
Exponential Smoothing | ||||||||||
Year | Coded Year | Revenues | W=0.45 | |||||||
1975 | 0 | 1 | ||||||||
1976 | 1 | 1.2 | 1 | |||||||
1977 | 2 | 1.4 | 1.09 | |||||||
1978 | 3 | 1.7 | 1.2295 | |||||||
1979 | 4 | 1.9 | 1.441225 | |||||||
1980 | 5 | 2.2 | 1.64767375 | |||||||
1981 | 6 | 2.5 | 1.896220563 | |||||||
1982 | 7 | 2.8 | 2.167921309 | |||||||
1983 | 8 | 3.1 | 2.45235672 | |||||||
1984 | 9 | 3.6 | 2.743796196 | |||||||
1985 | 10 | 3.8 | 3.129087908 | |||||||
1986 | 11 | 3.9 | 3.430998349 | |||||||
1987 | 12 | 4.9 | 3.642049092 | |||||||
1988 | 13 | 5.2 | 4.208127001 | |||||||
1989 | 14 | 5.9 | 4.65446985 | |||||||
1990 | 15 | 6.4 | 5.214958418 | |||||||
1991 | 16 | 6.7 | 5.74822713 | |||||||
1992 | 17 | 7 | 6.176524921 | |||||||
1993 | 18 | 7.4 | 6.547088707 | |||||||
1994 | 19 | 8.3 | 6.930898789 | |||||||
1995 | 20 | 9.8 | 7.546994334 | |||||||
1996 | 21 | 10.7 | 8.560846884 | |||||||
1997 | 22 | 11.4 | 9.523465786 | |||||||
1998 | 23 | 13.4 | 10.36790618 | |||||||
1999 | 24 | 14.5 | 11.7323484 | |||||||
2000 | 25 | 15.6 | 12.97779162 | |||||||
2001 | 26 | 14.9 | 14.15778539 | |||||||
2002 | 27 | 15.4 | 14.49178197 | |||||||
2003 | 28 | 17.1 | 14.90048008 | |||||||
2004 | 29 | 19 | 15.89026404 | |||||||
2005 | 30 | 20.5 | 17.28964522 | |||||||
2006 | 31 | 19.3 | 18.73430487 | |||||||
2007 | 32 | 22.4 | 18.98886768 | |||||||
2008 | 33 | 24.5 | 20.52387722 | |||||||
2009 | 34 | 23.6 | 22.31313247 | |||||||
2010 | 35 | 24.1 | 22.89222286 | |||||||
2011 | 36 | 29.5 | 23.43572257 | |||||||
2012 | 37 | 26.7 | 26.16464742 | |||||||
2013 | 26.40555608 | |||||||||
c) Plot the results from a) and b) with the time series on a scatter plot. | ||||||||||
| ||||||||||
d) Compute a quadratic trend forecasting equation and plot the predicted result with the data against the coded years. | ||||||||||
Y | X | |||||||||
Revenues | Coded Year | X^2 | Quadratic | |||||||
1 | 0 | 1 | 0.09025703 | |||||||
1.2 | 1 | 1.44 | 0.498757525 | |||||||
1.4 | 2 | 1.96 | 0.908705531 | |||||||
1.7 | 3 | 2.89 | 1.326072025 | |||||||
1.9 | 4 | 3.61 | 1.739638805 | |||||||
2.2 | 5 | 4.84 | 2.162433461 | |||||||
2.5 | 6 | 6.25 | 2.588485015 | |||||||
2.8 | 7 | 7.84 | 3.017793467 | |||||||
3.1 | 8 | 9.61 | 3.450358815 | |||||||
3.6 | 9 | 12.96 | 3.911512487 | |||||||
3.8 | 10 | 14.44 | 4.338830612 | |||||||
3.9 | 11 | 15.21 | 4.753302086 | |||||||
4.9 | 12 | 24.01 | 5.313067375 | |||||||
5.2 | 13 | 27.04 | 5.768431006 | |||||||
5.9 | 14 | 34.81 | 6.309559604 | |||||||
6.4 | 15 | 40.96 | 6.821376125 | |||||||
6.7 | 16 | 44.89 | 7.293024244 | |||||||
7 | 17 | 49 | 7.76792926 | |||||||
7.4 | 18 | 54.76 | 8.27268917 | |||||||
8.3 | 19 | 68.89 | 8.928894812 | |||||||
9.8 | 20 | 96.04 | 9.820682706 | |||||||
10.7 | 21 | 114.49 | 10.55505389 | |||||||
11.4 | 22 | 129.96 | 11.23550532 | |||||||
13.4 | 23 | 179.56 | 12.53350071 | |||||||
14.5 | 24 | 210.25 | 13.48934092 | |||||||
15.6 | 25 | 243.36 | 14.48896831 | |||||||
14.9 | 26 | 222.01 | 14.50320327 | |||||||
15.4 | 27 | 237.16 | 15.17786466 | |||||||
17.1 | 28 | 292.41 | 16.57809044 | |||||||
19 | 29 | 361 | 18.21968851 | |||||||
20.5 | 30 | 420.25 | 19.69228979 | |||||||
19.3 | 31 | 372.49 | 19.22866551 | |||||||
22.4 | 32 | 501.76 | 21.96819991 | |||||||
24.5 | 33 | 600.25 | 24.15080484 | |||||||
23.6 | 34 | 556.96 | 23.76806018 | |||||||
24.1 | 35 | 580.81 | 24.60013829 | |||||||
29.5 | 36 | 870.25 | 30.23776863 | |||||||
26.7 | 37 | 712.89 | 27.79105567 | |||||||
SUMMARY OUTPUT | ||||||||||
Regression Statistics | ||||||||||
Multiple R | 0.997512999 | |||||||||
R Square | 0.995032183 | |||||||||
Adjusted R Square | 0.994748308 | |||||||||
Standard Error | 0.611342825 | |||||||||
Observations | 38 | |||||||||
ANOVA | ||||||||||
df | SS | MS | F | Significance F | ||||||
Regression | 2 | 2620.047782 | 1310.023891 | 3505.173962 | 4.82E-41 | |||||
Residual | 35 | 13.08090174 | 0.37374005 | |||||||
Total | 37 | 2633.128684 | ||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||
Intercept | 0.072163155 | 0.240458073 | 0.300107018 | 0.765870804 | -0.41599 | 0.560318996 | -0.41599 | 0.560319 | ||
Coded Year | 0.40053919 | 0.01915883 | 20.90624462 | 2.337E-21 | 0.361645 | 0.439433683 | 0.361645 | 0.439434 | ||
X^2 | 0.018093875 | 0.000911953 | 19.84079847 | 1.26918E-20 | 0.016243 | 0.019945238 | 0.016243 | 0.019945 | ||
Y=0.072+0.400X+0.018X^2 | quadratic forecasting model | |||||||||
e) Compute an exponential trend forcasting equation and plot the predicted results with the data against the coded years. | ||||||||||
Y | X | |||||||||
Revenues | log(Y) | Coded Year | Exponential | |||||||
1 | 0 | 0 | 1.476038177 | |||||||
1.2 | 0.079181246 | 1 | 1.61028543 | |||||||
1.4 | 0.146128036 | 2 | 1.756742615 | |||||||
1.7 | 0.230448921 | 3 | 1.916520238 | |||||||
1.9 | 0.278753601 | 4 | 2.090829806 | |||||||
2.2 | 0.342422681 | 5 | 2.280993017 | |||||||
2.5 | 0.397940009 | 6 | 2.488451775 | |||||||
2.8 | 0.447158031 | 7 | 2.71477913 | |||||||
3.1 | 0.491361694 | 8 | 2.961691199 | |||||||
3.6 | 0.556302501 | 9 | 3.231060186 | |||||||
3.8 | 0.579783597 | 10 | 3.524928571 | |||||||
3.9 | 0.591064607 | 11 | 3.845524601 | |||||||
4.9 | 0.69019608 | 12 | 4.195279182 | |||||||
5.2 | 0.716003344 | 13 | 4.576844317 | |||||||
5.9 | 0.770852012 | 14 | 4.993113211 | |||||||
6.4 | 0.806179974 | 15 | 5.447242206 | |||||||
6.7 | 0.826074803 | 16 | 5.942674719 | |||||||
7 | 0.84509804 | 17 | 6.48316735 | |||||||
7.4 | 0.86923172 | 18 | 7.072818365 | |||||||
8.3 | 0.919078092 | 19 | 7.716098772 | |||||||
9.8 | 0.991226076 | 20 | 8.41788622 | |||||||
10.7 | 1.029383778 | 21 | 9.183501989 | |||||||
11.4 | 1.056904851 | 22 | 10.01875133 | |||||||
13.4 | 1.127104798 | 23 | 10.9299675 | |||||||
14.5 | 1.161368002 | 24 | 11.92405975 | |||||||
15.6 | 1.193124598 | 25 | 13.00856575 | |||||||
14.9 | 1.173186268 | 26 | 14.19170874 | |||||||
15.4 | 1.187520721 | 27 | 15.48245986 | |||||||
17.1 | 1.23299611 | 28 | 16.89060616 | |||||||
19 | 1.278753601 | 29 | 18.42682489 | |||||||
20.5 | 1.311753861 | 30 | 20.10276435 | |||||||
19.3 | 1.285557309 | 31 | 21.9311323 | |||||||
22.4 | 1.350248018 | 32 | 23.92579227 | |||||||
24.5 | 1.389166084 | 33 | 26.10186871 | |||||||
23.6 | 1.372912003 | 34 | 28.47586163 | |||||||
24.1 | 1.382017043 | 35 | 31.06577174 | |||||||
29.5 | 1.469822016 | 36 | 33.89123696 | |||||||
26.7 | 1.426511261 | 37 | 36.97368127 | |||||||
SUMMARY OUTPUT | ||||||||||
Regression Statistics | ||||||||||
Multiple R | 0.987441402 | |||||||||
R Square | 0.975040523 | |||||||||
Adjusted R Square | 0.974347204 | |||||||||
Standard Error | 0.068146237 | |||||||||
Observations | 38 | |||||||||
ANOVA | ||||||||||
df | SS | MS | F | Significance F | ||||||
Regression | 1 | 6.530906101 | 6.530906101 | 1406.338 | 1.8889E-30 | |||||
Residual | 36 | 0.167180744 | 0.00464391 | |||||||
Total | 37 | 6.698086845 | ||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||
log(b0)) | Intercept | 0.169097591 | 0.021680206 | 7.799630256 | 3.02E-09 | 0.125128095 | 0.213067 | 0.125128 | 0.213067 | |
log(b1) | Coded Year | 0.037805273 | 0.001008109 | 37.50117225 | 1.89E-30 | 0.035760733 | 0.03985 | 0.035761 | 0.03985 | |
b0=10^0.16= | 1.476038177 | |||||||||
b1=10^0.037= | 1.090951071 | |||||||||
Y= 1.476*1.090^X | Exponential Forecasting Model | |||||||||
f) Compute a second -order autoregressive model, test for the significance of the second-order | ||||||||||
X | Y | |||||||||
Year | Coded Year | Revenues | Lag1 | Lag2 | Lag3 | |||||
1975 | 0 | 1 | #N/A | #N/A | #N/A | |||||
1976 | 1 | 1.2 | 1 | #N/A | #N/A | |||||
1977 | 2 | 1.4 | 1.2 | 1 | #N/A | |||||
1978 | 3 | 1.7 | 1.4 | 1.2 | 1 | |||||
1979 | 4 | 1.9 | 1.7 | 1.4 | 1.2 | |||||
1980 | 5 | 2.2 | 1.9 | 1.7 | 1.4 | |||||
1981 | 6 | 2.5 | 2.2 | 1.9 | 1.7 | |||||
1982 | 7 | 2.8 | 2.5 | 2.2 | 1.9 | |||||
1983 | 8 | 3.1 | 2.8 | 2.5 | 2.2 | |||||
1984 | 9 | 3.6 | 3.1 | 2.8 | 2.5 | |||||
1985 | 10 | 3.8 | 3.6 | 3.1 | 2.8 | |||||
1986 | 11 | 3.9 | 3.8 | 3.6 | 3.1 | |||||
1987 | 12 | 4.9 | 3.9 | 3.8 | 3.6 | |||||
1988 | 13 | 5.2 | 4.9 | 3.9 | 3.8 | |||||
1989 | 14 | 5.9 | 5.2 | 4.9 | 3.9 | |||||
1990 | 15 | 6.4 | 5.9 | 5.2 | 4.9 | |||||
1991 | 16 | 6.7 | 6.4 | 5.9 | 5.2 | |||||
1992 | 17 | 7 | 6.7 | 6.4 | 5.9 | |||||
1993 | 18 | 7.4 | 7 | 6.7 | 6.4 | |||||
1994 | 19 | 8.3 | 7.4 | 7 | 6.7 | |||||
1995 | 20 | 9.8 | 8.3 | 7.4 | 7 | |||||
1996 | 21 | 10.7 | 9.8 | 8.3 | 7.4 | |||||
1997 | 22 | 11.4 | 10.7 | 9.8 | 8.3 | |||||
1998 | 23 | 13.4 | 11.4 | 10.7 | 9.8 | |||||
1999 | 24 | 14.5 | 13.4 | 11.4 | 10.7 | |||||
2000 | 25 | 15.6 | 14.5 | 13.4 | 11.4 | |||||
2001 | 26 | 14.9 | 15.6 | 14.5 | 13.4 | |||||
2002 | 27 | 15.4 | 14.9 | 15.6 | 14.5 | |||||
2003 | 28 | 17.1 | 15.4 | 14.9 | 15.6 | |||||
2004 | 29 | 19 | 17.1 | 15.4 | 14.9 | |||||
2005 | 30 | 20.5 | 19 | 17.1 | 15.4 | |||||
2006 | 31 | 19.3 | 20.5 | 19 | 17.1 | |||||
2007 | 32 | 22.4 | 19.3 | 20.5 | 19 | |||||
2008 | 33 | 24.5 | 22.4 | 19.3 | 20.5 | |||||
2009 | 34 | 23.6 | 24.5 | 22.4 | 19.3 | |||||
2010 | 35 | 24.1 | 23.6 | 24.5 | 22.4 | |||||
2011 | 36 | 29.5 | 24.1 | 23.6 | 24.5 | |||||
2012 | 37 | 26.7 | 29.5 | 24.1 | 23.6 | |||||
SUMMARY OUTPUT | ||||||||||
Regression Statistics | ||||||||||
Multiple R | 0.969101336 | |||||||||
R Square | 0.9391574 | |||||||||
Adjusted R Square | 0.90968955 | |||||||||
Standard Error | 2.109544412 | |||||||||
Observations | 38 | |||||||||
ANOVA | ||||||||||
df | SS | MS | F | Significance F | ||||||
Regression | 2 | 2472.92229 | 1236.461145 | 555.6907 | 3.0404E-27 | |||||
Residual | 36 | 160.2063946 | 4.450177627 | |||||||
Total | 38 | 2633.128684 | ||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||
a0 | Intercept | -2.733198381 | 0.671135483 | -4.072498697 | 0.000244 | -4.09432423 | -1.37207 | -4.09432 | -1.37207 | |
a1 | X Variable 1 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | |
a2 | X Variable 2 | 0.735649415 | 0.031207166 | 23.57309256 | #NUM! | 0.672358348 | 0.79894 | 0.672358 | 0.79894 | |
p=2 | Yi= -2.733+ 0-1+ 0.735Yi-2 | |||||||||
tscore=a2/Sa2 | 23.57309256 | |||||||||
t critical for 38-2*2-1=36 | ||||||||||
tcritical is 2.042 | ||||||||||
t-diagram | ||||||||||
0 | ||||||||||
Since t score of the a2 23.57 is more than the critical value 2.042 the initial assumption is | ||||||||||
denied. The second-order autoregressive parameter is significantly large | ||||||||||
and the contribution of its term to the model is significant | ||||||||||
g) If necessary, compute a first-order autoregressive model, test for the significance of the first-oder | ||||||||||
autoregressive parameter, and plot the predicted results with the data against the coded years. | ||||||||||
SUMMARY OUTPUT | ||||||||||
Regression Statistics | ||||||||||
Multiple R | 0.994005399 | |||||||||
R Square | 0.988046733 | |||||||||
Adjusted R Square | 0.987705211 | |||||||||
Standard Error | 0.89518193 | |||||||||
Observations | 37 | |||||||||
ANOVA | ||||||||||
df | SS | MS | F | Significance F | ||||||
Regression | 1 | 2318.363537 | 2318.363537 | 2893.07 | 3.05696E-35 | |||||
Residual | 35 | 28.04727406 | 0.801350687 | |||||||
Total | 36 | 2346.410811 | ||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||
a0 | Intercept | 0.434552578 | 0.244600786 | 1.776578827 | 0.084331 | -0.06201342 | 0.931119 | -0.06201 | 0.931119 | |
a1 | X Variable 1 | 1.021870052 | 0.018998364 | 53.78726503 | 3.06E-35 | 0.983301322 | 1.060439 | 0.983301 | 1.060439 | |
p = 1 | Yi = 0.434 + 1.021Yi-1 | |||||||||
tscore = a1/Sa1 = | 53.78726503 | |||||||||
t critical for 32-2*1-1=29 | ||||||||||
tcritical is 2.045 | ||||||||||
t-diagram | ||||||||||
0 | ||||||||||
Since t score of the a1 53.78 is more than the critical value 2.045 the initial assumption is | ||||||||||
rejected. The first-order autoregressive parameter is significantly large | ||||||||||
and the contribution of its term to the model is significant | ||||||||||
h) predict the values for years 2013 and 2014 using the best model out of d and e. | ||||||||||
And the apropriate autoregressive model of f) or g). | ||||||||||
For year 2013 as year 38 | 0.434552578 | |||||||||
For year 2014 as year 39 | 0.878608843 | |||||||||
X | Y | Yhat | ||||||||
Coded Year | Revenue | Yi = 0.434 + 1.021Yi-1 | ||||||||
0 | 1 | |||||||||
1 | 1.2 | 1.456422629 | ||||||||
2 | 1.4 | 1.66079664 | ||||||||
3 | 1.7 | 1.86517065 | ||||||||
4 | 1.9 | 2.171731666 | ||||||||
5 | 2.2 | 2.376105676 | ||||||||
6 | 2.5 | 2.682666691 | ||||||||
7 | 2.8 | 2.989227707 | ||||||||
8 | 3.1 | 3.295788722 | ||||||||
9 | 3.6 | 3.602349738 | ||||||||
10 | 3.8 | 4.113284764 | ||||||||
11 | 3.9 | 4.317658774 | ||||||||
12 | 4.9 | 4.419845779 | ||||||||
13 | 5.2 | 5.441715831 | ||||||||
14 | 5.9 | 5.748276846 | ||||||||
15 | 6.4 | 6.463585882 | ||||||||
16 | 6.7 | 6.974520908 | ||||||||
17 | 7 | 7.281081923 | ||||||||
18 | 7.4 | 7.587642939 | ||||||||
19 | 8.3 | 7.996390959 | ||||||||
20 | 9.8 | 8.916074006 | ||||||||
21 | 10.7 | 10.44887908 | ||||||||
22 | 11.4 | 11.36856213 | ||||||||
23 | 13.4 | 12.08387117 | ||||||||
24 | 14.5 | 14.12761127 | ||||||||
25 | 15.6 | 15.25166833 | ||||||||
26 | 14.9 | 16.37572538 | ||||||||
27 | 15.4 | 15.66041635 | ||||||||
28 | 17.1 | 16.17135137 | ||||||||
29 | 19 | 17.90853046 | ||||||||
30 | 20.5 | 19.85008356 | ||||||||
31 | 19.3 | 21.38288863 | ||||||||
32 | 22.4 | 20.15664457 | ||||||||
33 | 24.5 | 23.32444173 | ||||||||
34 | 23.6 | 25.47036884 | ||||||||
35 | 24.1 | 24.55068579 | ||||||||
36 | 29.5 | 25.06162082 | ||||||||
37 | 26.7 | 30.5797191 | ||||||||
The owner of a chain of ice cream store would like to study | ||||||||||
the effect of atmosperic temperature on sales during the summer season. | ||||||||||
A sample of 24 consecutive days is selected, with the results stored in the table below | ||||||||||
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started