Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Pr1. Time Series. Written 20% Test Grade 0 The data in the table below represent the annual revenues(in billion of dollars) of McDonald's Corporation over

Pr1. Time Series. Written 20%
Test Grade 0
The data in the table below represent the annual revenues(in billion of dollars)
of McDonald's Corporation over the period from 1975 to 2012.
A) Calculate a five-year moving average to the data (add a column to the table)
Year Coded Year Revenues Forecast
1975 0 1
1976 1 1.2
1977 2 1.4
1978 3 1.7
1979 4 1.9
1980 5 2.2 1.44
1981 6 2.5 1.68
1982 7 2.8 1.94
1983 8 3.1 2.22
1984 9 3.6 2.5
1985 10 3.8 2.84
1986 11 3.9 3.16
1987 12 4.9 3.44
1988 13 5.2 3.86
1989 14 5.9 4.28
1990 15 6.4 4.74
1991 16 6.7 5.26
1992 17 7 5.82
1993 18 7.4 6.24
1994 19 8.3 6.68
1995 20 9.8 7.16
1996 21 10.7 7.84
1997 22 11.4 8.64
1998 23 13.4 9.52
1999 24 14.5 10.72
2000 25 15.6 11.96
2001 26 14.9 13.12
2002 27 15.4 13.96
2003 28 17.1 14.76
2004 29 19 15.5
2005 30 20.5 16.4
2006 31 19.3 17.38
2007 32 22.4 18.26
2008 33 24.5 19.66
2009 34 23.6 21.14
2010 35 24.1 22.06
2011 36 29.5 22.78
2012 37 26.7 24.82
2013 25.68
B) Using a smoothing coefficient of W = 0.45, exponentially smooth the series
(add a column to the table, use data analysis to smooth)
Exponential Smoothing
Year Coded Year Revenues W=0.45
1975 0 1
1976 1 1.2 1
1977 2 1.4 1.09
1978 3 1.7 1.2295
1979 4 1.9 1.441225
1980 5 2.2 1.64767375
1981 6 2.5 1.896220563
1982 7 2.8 2.167921309
1983 8 3.1 2.45235672
1984 9 3.6 2.743796196
1985 10 3.8 3.129087908
1986 11 3.9 3.430998349
1987 12 4.9 3.642049092
1988 13 5.2 4.208127001
1989 14 5.9 4.65446985
1990 15 6.4 5.214958418
1991 16 6.7 5.74822713
1992 17 7 6.176524921
1993 18 7.4 6.547088707
1994 19 8.3 6.930898789
1995 20 9.8 7.546994334
1996 21 10.7 8.560846884
1997 22 11.4 9.523465786
1998 23 13.4 10.36790618
1999 24 14.5 11.7323484
2000 25 15.6 12.97779162
2001 26 14.9 14.15778539
2002 27 15.4 14.49178197
2003 28 17.1 14.90048008
2004 29 19 15.89026404
2005 30 20.5 17.28964522
2006 31 19.3 18.73430487
2007 32 22.4 18.98886768
2008 33 24.5 20.52387722
2009 34 23.6 22.31313247
2010 35 24.1 22.89222286
2011 36 29.5 23.43572257
2012 37 26.7 26.16464742
2013 26.40555608
c) Plot the results from a) and b) with the time series on a scatter plot.

d) Compute a quadratic trend forecasting equation and plot the predicted result with the data against the coded years.
Y X
Revenues Coded Year X^2 Quadratic
1 0 1 0.09025703
1.2 1 1.44 0.498757525
1.4 2 1.96 0.908705531
1.7 3 2.89 1.326072025
1.9 4 3.61 1.739638805
2.2 5 4.84 2.162433461
2.5 6 6.25 2.588485015
2.8 7 7.84 3.017793467
3.1 8 9.61 3.450358815
3.6 9 12.96 3.911512487
3.8 10 14.44 4.338830612
3.9 11 15.21 4.753302086
4.9 12 24.01 5.313067375
5.2 13 27.04 5.768431006
5.9 14 34.81 6.309559604
6.4 15 40.96 6.821376125
6.7 16 44.89 7.293024244
7 17 49 7.76792926
7.4 18 54.76 8.27268917
8.3 19 68.89 8.928894812
9.8 20 96.04 9.820682706
10.7 21 114.49 10.55505389
11.4 22 129.96 11.23550532
13.4 23 179.56 12.53350071
14.5 24 210.25 13.48934092
15.6 25 243.36 14.48896831
14.9 26 222.01 14.50320327
15.4 27 237.16 15.17786466
17.1 28 292.41 16.57809044
19 29 361 18.21968851
20.5 30 420.25 19.69228979
19.3 31 372.49 19.22866551
22.4 32 501.76 21.96819991
24.5 33 600.25 24.15080484
23.6 34 556.96 23.76806018
24.1 35 580.81 24.60013829
29.5 36 870.25 30.23776863
26.7 37 712.89 27.79105567
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.997512999
R Square 0.995032183
Adjusted R Square 0.994748308
Standard Error 0.611342825
Observations 38
ANOVA
df SS MS F Significance F
Regression 2 2620.047782 1310.023891 3505.173962 4.82E-41
Residual 35 13.08090174 0.37374005
Total 37 2633.128684
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 0.072163155 0.240458073 0.300107018 0.765870804 -0.41599 0.560318996 -0.41599 0.560319
Coded Year 0.40053919 0.01915883 20.90624462 2.337E-21 0.361645 0.439433683 0.361645 0.439434
X^2 0.018093875 0.000911953 19.84079847 1.26918E-20 0.016243 0.019945238 0.016243 0.019945
Y=0.072+0.400X+0.018X^2 quadratic forecasting model
e) Compute an exponential trend forcasting equation and plot the predicted results with the data against the coded years.
Y X
Revenues log(Y) Coded Year Exponential
1 0 0 1.476038177
1.2 0.079181246 1 1.61028543
1.4 0.146128036 2 1.756742615
1.7 0.230448921 3 1.916520238
1.9 0.278753601 4 2.090829806
2.2 0.342422681 5 2.280993017
2.5 0.397940009 6 2.488451775
2.8 0.447158031 7 2.71477913
3.1 0.491361694 8 2.961691199
3.6 0.556302501 9 3.231060186
3.8 0.579783597 10 3.524928571
3.9 0.591064607 11 3.845524601
4.9 0.69019608 12 4.195279182
5.2 0.716003344 13 4.576844317
5.9 0.770852012 14 4.993113211
6.4 0.806179974 15 5.447242206
6.7 0.826074803 16 5.942674719
7 0.84509804 17 6.48316735
7.4 0.86923172 18 7.072818365
8.3 0.919078092 19 7.716098772
9.8 0.991226076 20 8.41788622
10.7 1.029383778 21 9.183501989
11.4 1.056904851 22 10.01875133
13.4 1.127104798 23 10.9299675
14.5 1.161368002 24 11.92405975
15.6 1.193124598 25 13.00856575
14.9 1.173186268 26 14.19170874
15.4 1.187520721 27 15.48245986
17.1 1.23299611 28 16.89060616
19 1.278753601 29 18.42682489
20.5 1.311753861 30 20.10276435
19.3 1.285557309 31 21.9311323
22.4 1.350248018 32 23.92579227
24.5 1.389166084 33 26.10186871
23.6 1.372912003 34 28.47586163
24.1 1.382017043 35 31.06577174
29.5 1.469822016 36 33.89123696
26.7 1.426511261 37 36.97368127
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.987441402
R Square 0.975040523
Adjusted R Square 0.974347204
Standard Error 0.068146237
Observations 38
ANOVA
df SS MS F Significance F
Regression 1 6.530906101 6.530906101 1406.338 1.8889E-30
Residual 36 0.167180744 0.00464391
Total 37 6.698086845
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
log(b0)) Intercept 0.169097591 0.021680206 7.799630256 3.02E-09 0.125128095 0.213067 0.125128 0.213067
log(b1) Coded Year 0.037805273 0.001008109 37.50117225 1.89E-30 0.035760733 0.03985 0.035761 0.03985
b0=10^0.16= 1.476038177
b1=10^0.037= 1.090951071
Y= 1.476*1.090^X Exponential Forecasting Model
f) Compute a second -order autoregressive model, test for the significance of the second-order
X Y
Year Coded Year Revenues Lag1 Lag2 Lag3
1975 0 1 #N/A #N/A #N/A
1976 1 1.2 1 #N/A #N/A
1977 2 1.4 1.2 1 #N/A
1978 3 1.7 1.4 1.2 1
1979 4 1.9 1.7 1.4 1.2
1980 5 2.2 1.9 1.7 1.4
1981 6 2.5 2.2 1.9 1.7
1982 7 2.8 2.5 2.2 1.9
1983 8 3.1 2.8 2.5 2.2
1984 9 3.6 3.1 2.8 2.5
1985 10 3.8 3.6 3.1 2.8
1986 11 3.9 3.8 3.6 3.1
1987 12 4.9 3.9 3.8 3.6
1988 13 5.2 4.9 3.9 3.8
1989 14 5.9 5.2 4.9 3.9
1990 15 6.4 5.9 5.2 4.9
1991 16 6.7 6.4 5.9 5.2
1992 17 7 6.7 6.4 5.9
1993 18 7.4 7 6.7 6.4
1994 19 8.3 7.4 7 6.7
1995 20 9.8 8.3 7.4 7
1996 21 10.7 9.8 8.3 7.4
1997 22 11.4 10.7 9.8 8.3
1998 23 13.4 11.4 10.7 9.8
1999 24 14.5 13.4 11.4 10.7
2000 25 15.6 14.5 13.4 11.4
2001 26 14.9 15.6 14.5 13.4
2002 27 15.4 14.9 15.6 14.5
2003 28 17.1 15.4 14.9 15.6
2004 29 19 17.1 15.4 14.9
2005 30 20.5 19 17.1 15.4
2006 31 19.3 20.5 19 17.1
2007 32 22.4 19.3 20.5 19
2008 33 24.5 22.4 19.3 20.5
2009 34 23.6 24.5 22.4 19.3
2010 35 24.1 23.6 24.5 22.4
2011 36 29.5 24.1 23.6 24.5
2012 37 26.7 29.5 24.1 23.6
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.969101336
R Square 0.9391574
Adjusted R Square 0.90968955
Standard Error 2.109544412
Observations 38
ANOVA
df SS MS F Significance F
Regression 2 2472.92229 1236.461145 555.6907 3.0404E-27
Residual 36 160.2063946 4.450177627
Total 38 2633.128684
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
a0 Intercept -2.733198381 0.671135483 -4.072498697 0.000244 -4.09432423 -1.37207 -4.09432 -1.37207
a1 X Variable 1 0 0 65535 #NUM! 0 0 0 0
a2 X Variable 2 0.735649415 0.031207166 23.57309256 #NUM! 0.672358348 0.79894 0.672358 0.79894
p=2 Yi= -2.733+ 0-1+ 0.735Yi-2
tscore=a2/Sa2 23.57309256
t critical for 38-2*2-1=36
tcritical is 2.042
t-diagram
0
Since t score of the a2 23.57 is more than the critical value 2.042 the initial assumption is
denied. The second-order autoregressive parameter is significantly large
and the contribution of its term to the model is significant
g) If necessary, compute a first-order autoregressive model, test for the significance of the first-oder
autoregressive parameter, and plot the predicted results with the data against the coded years.
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.994005399
R Square 0.988046733
Adjusted R Square 0.987705211
Standard Error 0.89518193
Observations 37
ANOVA
df SS MS F Significance F
Regression 1 2318.363537 2318.363537 2893.07 3.05696E-35
Residual 35 28.04727406 0.801350687
Total 36 2346.410811
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
a0 Intercept 0.434552578 0.244600786 1.776578827 0.084331 -0.06201342 0.931119 -0.06201 0.931119
a1 X Variable 1 1.021870052 0.018998364 53.78726503 3.06E-35 0.983301322 1.060439 0.983301 1.060439
p = 1 Yi = 0.434 + 1.021Yi-1
tscore = a1/Sa1 = 53.78726503
t critical for 32-2*1-1=29
tcritical is 2.045
t-diagram
0
Since t score of the a1 53.78 is more than the critical value 2.045 the initial assumption is
rejected. The first-order autoregressive parameter is significantly large
and the contribution of its term to the model is significant
h) predict the values for years 2013 and 2014 using the best model out of d and e.
And the apropriate autoregressive model of f) or g).
For year 2013 as year 38 0.434552578
For year 2014 as year 39 0.878608843
X Y Yhat
Coded Year Revenue Yi = 0.434 + 1.021Yi-1
0 1
1 1.2 1.456422629
2 1.4 1.66079664
3 1.7 1.86517065
4 1.9 2.171731666
5 2.2 2.376105676
6 2.5 2.682666691
7 2.8 2.989227707
8 3.1 3.295788722
9 3.6 3.602349738
10 3.8 4.113284764
11 3.9 4.317658774
12 4.9 4.419845779
13 5.2 5.441715831
14 5.9 5.748276846
15 6.4 6.463585882
16 6.7 6.974520908
17 7 7.281081923
18 7.4 7.587642939
19 8.3 7.996390959
20 9.8 8.916074006
21 10.7 10.44887908
22 11.4 11.36856213
23 13.4 12.08387117
24 14.5 14.12761127
25 15.6 15.25166833
26 14.9 16.37572538
27 15.4 15.66041635
28 17.1 16.17135137
29 19 17.90853046
30 20.5 19.85008356
31 19.3 21.38288863
32 22.4 20.15664457
33 24.5 23.32444173
34 23.6 25.47036884
35 24.1 24.55068579
36 29.5 25.06162082
37 26.7 30.5797191
The owner of a chain of ice cream store would like to study
the effect of atmosperic temperature on sales during the summer season.
A sample of 24 consecutive days is selected, with the results stored in the table below

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

College Algebra DeMYSTiFieD

Authors: Rhonda Huettenmueller

2nd Edition

0071815856, 9780071815857

More Books

Students also viewed these Mathematics questions