Question
Problem 13-15 (Algorithmic) The Lake Placid Town Council decided to build a new community center to be used for conventions, concerts, and other public events,
Problem 13-15 (Algorithmic)
The Lake Placid Town Council decided to build a new community center to be used for conventions, concerts, and other public events, but considerable controversy surrounds the appropriate size. Many influential citizens want a large center that would be a showcase for the area. But the mayor feels that if demand does not support such a center, the community will lose a large amount of money. To provide structure for the decision process, the council narrowed the building alternatives to three sizes: small, medium, and large. Everybody agreed that the critical factor in choosing the best size is the number of people who will want to use the new facility. A regional planning consultant provided demand estimates under three scenarios: worst-case, base-case, and best-case. The worst-case scenario corresponds to a situation in which tourism drops substantially; the base-case scenario corresponds to a situation in which Lake Placid continues to attract visitors at current levels; and the best-case scenario corresponds to a substantial increase in tourism. The consultant has provided probability assessments of 0.10, 0.60, and 0.30 for the worst-case, base-case, and best-case scenarios, respectively.
The town council suggested using net cash flow over a 5-year planning horizon as the criterion for deciding on the best size. The following projections of net cash flow (in thousands of dollars) for a 5-year planning horizon have been developed. All costs, including the consultants fee, have been included.
Demand Scenario | |||
Center Size | Worst-Case | Base-Case | Best-Case |
Small | 200 | 460 | 580 |
Medium | -250 | 640 | 840 |
Large | -340 | 530 | 1090 |
What decision should Lake Placid make using the expected value approach?______________________
1.) Create risks profiles for the alternatives.
Risk profile for medium-size community center: _________________ Risk profile for large-size community center: ___________________ Given the mayor's concern over the possibility of losing money and the result of part (a), which alternative would you recommend? __________________________
Compute the expected value of perfect information. Enter your answer in thousands of dollars. EVPI = $ ________________ thousands. Do you think it would be worth trying to obtain additional information concerning which scenario is likely to occur? Best decision: ________________
Suppose the probability of the worst-case scenario increases to 0.2, the probability of the base-case scenario decreases to 0.5, and the probability of the best-case scenario remains at 0.3. What effect, if any, would these changes have on the decision recommendation? ________________________ ________________________
The consultant has suggested that an expenditure of $130,000 on a promotional campaign over the planning horizon will effectively reduce the probability of the worst-case scenario to zero. If the campaign can be expected to also increase the probability of the best-case scenario to 0.4, is it a good investment? Enter your answers in thousands of dollars. If the promotional campaign is conducted, a __________________center size would be selected. This would give an expected value of $_________ thousands. This is a $_____________ thousands over the answer in part (a). ____________________
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started