Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Problem 3 (20 points) Your friend tries to convince you of the following obviously erroneous theorem, and gives the following proof by induction. Theorem 1.

image text in transcribed
Problem 3 (20 points) Your friend tries to convince you of the following obviously erroneous theorem, and
gives the following proof by induction.
Theorem 1. In every set of 1 students, all students have the same favorite song.
Proof. Let () be the statement In every set of 1 students, all students have the same
favorite song. We will prove that () is true for every . For the base case (1) is true since
any single student has the same favorite song as itself. For the inductive step, we will prove that
( 1) = () for every 2. Consider any set of students. By the inductive hypothesis
( 1), the first 1 students have the same favorite song.
1 2 3 . . . 1
| {z }
same favorite song
Also, by the inductive hypothesis, the last 1 students have the same favorite song.
1 2 3 . . . 1
| {z }
same favorite song
By transitivity, all of the students must have the same favorite song. The proof of the theorem
now follows by induction.
Since the statement is obviously false, the proof must have a specific flaw. What is it?
23 (20 points) Your friend tries to convince you of the following obviously erroneous theorem, and gives the following proof by induction. Theorem 1. In every set of n1 students, all students have the same favorite song. Proof. Let H(k) be the statement "In every set of 1nk students, all students have the same favorite song." We will prove that H(n) is true for every n. For the base case H(1) is true since any single student has the same favorite song as itself. For the inductive step, we will prove that H(k1)H(k) for every k2. Consider any set of k students. By the inductive hypothesis H(k1), the first k1 students have the same favorite song. Also, by the inductive hypothesis, the last k1 students have the same favorite song. s1samefavoritesongs2s3sk1sk By transitivity, all k of the students must have the same favorite song. The proof of the theorem now follows by induction. Since the statement is obviously false, the proof must have a specific flaw. What is it

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Securing SQL Server Protecting Your Database From Attackers

Authors: Denny Cherry

2nd Edition

1597499471, 978-1597499477

More Books

Students also viewed these Databases questions