Question
Purpose This assignment provides an opportunity to develop, evaluate, and apply bivariate and multivariate linear regression models. Resources: Microsoft Excel, DAT565_v3_Wk5_Data_File Instructions: The Excel file
Purpose
This assignment provides an opportunity to develop, evaluate, and apply bivariate and multivariate linear regression models.
Resources:Microsoft Excel, DAT565_v3_Wk5_Data_File
Instructions:
The Excel file for this assignment contains a database with information about the tax assessment value assigned to medical office buildings in a city. The following is a list of the variables in the database:
- FloorArea: square feet of floor space
- Offices: number of offices in the building
- Entrances: number of customer entrances
- Age: age of the building (years)
- AssessedValue: tax assessment value (thousands of dollars)
Use the data to construct a model that predicts the tax assessment value assigned to medical office buildings with specific characteristics.
- Construct a scatter plot in Excel with FloorArea as the independent variable and AssessmentValue as the dependent variable. Insert the bivariate linear regression equation and r^2 in your graph. Do you observe a linear relationship between the 2 variables?
- Use Excel's Analysis ToolPak to conduct a regression analysis of FloorArea and AssessmentValue. Is FloorArea a significant predictor of AssessmentValue?
- Construct a scatter plot in Excel with Age as the independent variable and AssessmentValue as the dependent variable. Insert the bivariate linear regression equation and r^2 in your graph. Do you observe a linear relationship between the 2 variables?
- Use Excel's Analysis ToolPak to conduct a regression analysis of Age and Assessment Value. Is Age a significant predictor of AssessmentValue?
Construct a multiple regression model.
- Use Excel's Analysis ToolPak to conduct a regression analysis with AssessmentValue as the dependent variable and FloorArea, Offices, Entrances, and Age as independent variables. What is the overall fit r^2? What is the adjusted r^2?
- Which predictors are considered significant if we work with =0.05? Which predictors can be eliminated?
- What is the final model if we only use FloorArea and Offices as predictors?
- Suppose our final model is:
- AssessedValue = 115.9 + 0.26 x FloorArea + 78.34 x Offices
- What wouldbe the assessed value of a medical office building with a floor area of 3500 sq. ft., 2 offices, that was built 15 years ago? Is this assessed value consistent with what appears in the database?
Submityour assignment.
FloorArea (Sq.Ft.)
Offices
Entrances
Age
AssessedValue ($'000)
4790
4
2
8
1796
4720
3
2
12
1544
5940
4
2
2
2094
5720
4
2
34
1968
3660
3
2
38
1567
5000
4
2
31
1878
2990
2
1
19
949
2610
2
1
48
910
5650
4
2
42
1774
3570
2
1
4
1187
2930
3
2
15
1113
1280
2
1
31
671
4880
3
2
42
1678
1620
1
2
35
710
1820
2
1
17
678
4530
2
2
5
1585
2570
2
1
13
842
4690
2
2
45
1539
1280
1
1
45
433
4100
3
1
27
1268
3530
2
2
41
1251
3660
2
2
33
1094
1110
1
2
50
638
2670
2
2
39
999
1100
1
1
20
653
5810
4
3
17
1914
2560
2
2
24
772
2340
3
1
5
890
3690
2
2
15
1282
3580
3
2
27
1264
3610
2
1
8
1162
3960
3
2
17
1447
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started