PV of $1
Fv of $1
PVA of $1
Fva of $1
Exercise B-11 Present value with semiannual Compounding LO C1, P3 Otto Co borrows money on April 30, 2016, by promising to make four payments of $25,000 each on November 1, 2016 May 1, 2017: November 1, 2017, and May 1, 2018. (PV of $1. FV of $1. PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided. Round Table Factor" to 4 decimal places.) 1. How much money is Otto able to borrow if the interest rate is 6%, compounded semiannually? Periodic Cash Flow Table Factor Present Value $ 25,000 X 2. How much money is Otto able to borrow if the interest rate is 10%, compounded semiannually? Periodic Cash Flow Table Factor Present Value 3. How much money is Otto able to borrow if the interest rate is 12%, compounded semiannually? Periodic Cash Flow Table Factor Present Value TABLE B.19 Present Value of 1 p=1/(1+ir Rate Periods 1% 2% 3% 4% 5% 7. 9% 10% 12% 15% 2 3 4 5 6 7 8 9 10 12 13 14 15 16 12 18 0.9901 0.9803 0.9706 0.9510 0.9515 0.9420 0.9327 0.9235 0.9143 09053 0.8963 0.8874 0.8787 0.8700 0.8613 0.8528 0.8444 0.8360 0.8277 0.8195 0.7798 0.7419 0.7059 0.6717 0.9804 0.9612 0.9423 0.9238 0.9057 0.8880 0.8706 0.8535 0.8368 0.8203 0.8043 0.7885 0.7730 0.7579 0.7430 0.7284 0.7142 0.7002 0.6864 0.6730 0.6095 05521 0.5000 0,4529 0.9709 0.9426 0.9151 0.8885 0.8626 0.8375 0.8131 0.7894 0.7664 0.7441 0.7224 0.7014 0.6810 0.6611 0.6419 0.5232 0.6050 0.5874 0.5703 0.5537 0.4776 0.4120 0.3554 0.3066 0.9615 0.9246 0.8890 0.8548 0.8219 0.7903 0.7599 0.7307 0.7026 0.6756 0.6496 0.6246 0.6006 0.5775 0.5553 0.5339 0.5134 0.4936 0.4746 0.4564 0.3751 0.3083 0.2534 0.2083 0.9524 0.9070 0.8638 0.8227 0.7835 0.7462 0.7107 0.6768 0.5446 0.5139 0.5847 0.5568 0.5303 0.5051 0.4810 0.4581 0.4363 0.4155 0.3957 0.3769 0.2953 0.2314 0.1813 0.1420 0.9434 0.8900 0.8396 0.7921 0.7473 0.7050 0.6651 0.6274 0.5919 0,5584 0.5268 0.4970 0.4688 0,4423 0.4173 0.3936 0.3714 0.3503 0.3305 0.3118 0.2330 0.1741 0 1301 0,0972 0.9346 0.8734 0.8163 0.7629 0.7130 0.6663 0.6227 0.5820 0.5439 0.5083 0.4751 0.4440 0.4150 0.3878 0.3624 0.3387 0.3166 0.2959 0.2765 0.2584 0.1842 0.1314 0.0937 0.0668 0.9259 0.8573 0.7938 0.7350 0.6806 0.6302 0.5835 0.5403 0.5002 0.4632 0.4289 0.3971 0.3677 0.3405 0.3152 0.2919 0.2703 0.2502 0.2317 0.2145 0.1460 0.0994 0.0676 0.0460 0.9174 0.8417 0.7722 0.7084 0.6499 0.5963 0.5470 0.5019 0.4604 0.4224 0.3875 0.3555 0.3262 0.2992 0.2745 0.2519 0.2311 0.2120 0.1945 0.1784 0.1160 0.0754 0.0490 0.0318 0.9091 0.8264 0.7513 0.6830 0.6209 0.5645 0.5132 0.4665 0.4241 0.3855 0.3505 0.3186 0.2897 0.2633 0.2394 0.2176 0.1978 0.1799 0.1635 0.1486 0 0923 0.0573 0.0356 0.0221 0.8929 0.7972 0.7118 0.6355 0.5674 0.5066 0,4523 0.4039 0.3600 0.3220 0.2875 0.2567 0.2292 0.2046 0.1827 0.1631 0.1456 0.1300 0.1161 0.1037 0.0588 0.0334 0.0189 0.0107 0.8696 0.7561 0.6575 0.5718 0.4972 0.4323 0.3759 0.3269 0.2843 0.2472 02149 0.1869 0.1625 0.1413 0.1229 0.1069 0.0929 0.0808 0,0703 0.0611 0.0304 0.0151 0.0075 0.0037 20 30 35 40 do compute the prevalefakowane. Poreample: How much would you need to investody 10 compounded seminato cum 5.000 in 6 years from today in the face of 12 and 12 maal periods and semiannuse of the factor 0.556. You would need to invest $2.714 od spoox0.556 TABLE B.2 Future Value of 1 f= (1 + i)" Rate Periods 1% 2% 3% 5% 6% 7% 8% 10% 12% 15% 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 1.0000 1.0100 1,0201 1.0303 1.0406 1.0510 1.0615 1,0721 1.0829 1.0937 1.104 1.1157 1.1268 1.1381 1.1495 1.1610 1.1726 1.1843 1.1961 1.2081 1.2202 1.2824 1.3478 1.4166 1.4889 1.0000 1.0000 1.0200 1,0300 1.0404 1.0609 1.0612 1.0927 1.0824 1.1255 1.1041 1.1593 1.1262 1.1941 1.1487 1.2299 1.1717 1.2668 1.1951 1.3048 1.2190 1.3439 1.2434 1.3842 1.2682 1.4258 1.2936 1.4685 1.3195 1.5126 1.3459 1.5580 1.3728 1.6047 1.4002 1.6528 1.4282 1.7024 1.4568 1.7535 1.4859 1.8061 1.6406 2.0938 1.8114 2.4273 1.9999 28139 2.2010 3.2620 1.0000 1.0400 1,0816 1.1249 1.1699 1.2167 1.2653 1.3159 1.3686 1.4233 1.4802 1.5395 1.6010 1.6651 1.7317 1.8009 1.8730 1.9479 2.0258 2 1068 2.1911 2.6658 3.2434 3.9461 4.8010 1.0000 1.0500 1.1025 1.1576 1.2155 1.2763 1.3401 1.4071 1.4775 1.5513 1.6289 1.7103 1.7959 1.8856 1.9799 2.0789 2.1829 2.2920 2.4066 2.5270 2.6533 3.3864 4.3219 5.5160 7.0400 1.0000 1.0600 1.1236 1.1910 1.2625 1.3382 1.4185 1.5036 1.5938 1.6895 1.7908 1.8983 2.0122 2.1329 2.2609 2.3966 2.5404 2.6928 2.8543 3.0256 3.2071 4.2919 5.7435 7.6861 10.2857 1.0000 1.0700 1.1449 1.2250 1.3108 1.4026 1.5007 1.6058 1.7182 1.8385 1.9672 2.1049 2.2522 2.4098 2.5785 2.7590 2.9522 3.1588 3.3799 3.6165 3.8697 5.4274 7.6123 10.6766 14.9745 10000 1.0800 1.1664 1.2597 1.3605 1.4693 1.5869 1.7138 1.8509 1.9990 2.1589 2.3316 2.5182 2.7196 2.9372 3.1722 3.4259 3.7000 3.9960 4.3157 4.6610 6.8485 10.0627 14.7853 21.7245 1.0000 1.0900 1.1881 1.2950 1.4116 1.5386 1.6771 1.8280 1.9926 2.1719 2.3674 2.5804 2.8127 3.0658 3.3417 3.6425 3.9703 4.3276 4.7171 5.1417 5.6044 8.6231 13.2677 20.4140 31.4094 1.0000 1.1000 1.2100 1.3310 1.4641 1.6105 1.7716 1.9487 2.1435 2.3579 2.5937 2.8531 3.1384 3.4523 3.7975 4.1772 4.5950 5.0545 5.5599 6.1159 6.7275 10.8347 17.4494 28. 1024 45.2593 1.0000 1.1200 1.2544 1.4049 1.5735 1.7623 1.9738 22107 24760 2.7731 3.1058 3.4785 3.8960 4.3635 4.8871 5.4736 6.1304 6.8660 7.6900 8.6128 9.6463 17.0001 29.9599 52.7996 93.0510 1.0000 1.1500 1.3225 1.5209 1.7490 20114 2.3131 2.6600 3.0590 3.5179 4.0456 4.6524 5.3503 6.1528 7.0757 8.1371 9.3576 10.7613 123755 14.2318 16.3665 32.9190 66.2118 133.1755 267.8635 Used to compute the future value of a known present amount. For example: What is the accumulated value of $1,000 invested today at 8 compounded quarterly for 5 years? Using the factors of n = 20 und 1= 2% (20 quarterly periods and a quarterly interest rate of 2%), the factor is 1 4859. The accumulated value is $4.457.70(53.000 X 14859) (1 +0" TABLE B.3 Present Value of an Annuity of 1 Rate Periods 1% 2% 4% 5% 9% 10% 12% 15% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0.9901 1.9704 2.9410 3.9020 4.8534 5.7955 6.7282 7.6517 8.5660 9.4713 10.3676 11.2551 12.1337 13.0037 13.8651 14.7179 15 5623 16.3983 172260 18.0456 22.0232 25.8077 29.4086 32.8347 0.9804 1.9416 28839 3.8077 4.7135 5.6014 6.4720 7.3255 8.1622 8.9826 9.7868 10.5753 11.3484 12.1062 12.8493 13.5777 14.2919 14.9920 15.6785 16.3514 19.5235 22 3965 24.9986 27.3555 0.9709 1.9135 2.8286 3.7171 4.5797 5.4172 6.2303 7,0197 7.7861 8.5302 9.2526 9.9540 10.6350 11.2961 11.9379 125611 13.1661 13.7535 143238 14.8775 17.4131 19.6004 21.4872 23.1148 0.9615 1.8861 2.7751 3.6299 4.4518 5.2421 6.0021 6.7327 7.4353 8.1109 8.7505 9.3851 9.9856 10.5631 11.1184 11.6523 12.1657 12.6593 13.1339 13.5903 15.6221 17.2920 18.6646 19.7928 0.9524 1.8594 2.7232 3.5460 4.3295 5.0757 5.7864 6.4632 7.1078 7.724 8.3064 8.8633 9.3936 9.8986 10.3797 10.8378 11.2741 11.6896 12.0853 12.4622 14.0939 15.3725 16.3742 17.1591 0.9434 1.8334 2.6730 3.4651 4.2124 4.9173 5.5824 6.2008 6.8017 7.3601 7.8869 8.3838 8.8527 9.2950 9.7122 10.1059 10.4773 10.8276 11.1581 11.4699 12.7834 13.7648 14.4982 15.0463 0.9346 1.8080 2.6243 3.3872 4.1002 4.7665 5.3893 5.9713 6.5152 7.0236 7.4987 7.9427 8.3577 8.7455 9.1079 9.4466 9.7632 10.0591 10.3356 10.5940 11.6536 12.4090 12.9477 13.3317 0.9259 1.7833 2.5771 3.3121 3.9927 4.6229 5.2064 5.7466 6.2469 6.7101 17.1390 7.5361 7.9038 8.2442 8.5595 8.8514 9.1216 9.3719 9.6036 9.8181 10.6748 11.2578 11.6546 11.9246 0.9174 1.7591 2.5313 3.2397 3.8897 4.4859 5.0330 5.5348 5.9952 6.4177 6.8052 7.1607 7.4869 7.7862 8.0607 8.3126 8.5436 8.7556 8.9501 9.1285 9.8226 10.2737 10.5668 10.7574 0.9091 1.7355 2.4869 3.1699 3.7908 4.3553 4.8684 5.3349 5.7590 6.1446 6.4951 5.8137 7.1034 7.3667 7.6061 78237 8.0216 8.2014 8.3549 85136 9.0770 9.4269 9.6442 9.7791 0.8929 1.6901 2.4018 3.0373 3.6048 4.1114 4.5638 4.9676 5.3282 5.6502 5.9377 6.1944 6.4235 6.6282 6.8109 6.9740 7.1195 7.2497 73658 7.4694 78431 8.0552 8.1755 8.2438 0.8696 1.6257 22832 2.8550 3.3522 3.7845 4.1604 4.4873 4.7716 5.0188 5.2337 5.4206 5.5831 5.7245 5.8474 5.9542 6.0472 6,1280 6.1982 6.2593 6.4641 6.5660 6.6166 6.6418 18 19 20 25 30 35 40 f=[(1 + i)" - 1yi TABLE B.4 Future Value of an Annuity of 1 Rate Perlods 1% 2% 3% 4% 5% 6% 7% 8% 10% 12% 15% 1 2 3 4 5 5 7 B 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 1.0000 2.0100 3.0301 4.0604 5.1010 6.1520 7.2135 8.2857 9.3685 10,4622 11.5668 12.6825 13.8093 14.9474 16.0969 17.2579 18.4304 19.6147 20.8109 22.0190 28.2432 34.7849 41.6603 48.8864 1.0000 20200 3,0504 4.1216 5.2040 6.3081 7.4343 8.5830 9.7546 10.9497 12.1687 13.4121 14.6803 15.9739 17.2934 18.6393 20.0121 21.4123 22.8406 24 2974 32.0303 40.5681 49.9945 60.4020 1.0000 2.0300 3.0909 4.1836 5.3091 6.4684 7.6625 8.8923 10.1591 11.4639 12.8078 14.1920 15.6178 17.0863 18.5989 20.1569 21,7616 23.4144 25.1169 26.8704 36.4593 47 5754 60.4621 75.4013 1.0000 1.0000 1.0000 2.0400 2.0500 2.0600 3.1216 3.1525 3.1836 4.2465 4.3101 43746 5.4153 5,5256 5.6371 6.6330 6,8019 6.9753 7.8983 8.1420 8.3938 9.2142 9.5491 9.8975 10.5828 11.0266 11.4913 12.0061 12.5779 13.1808 13.4864 14.2068 - 14.9716 15.0258 15 9171 16,8699 16.6268 17.7130 18.8821 18.2919 19,5985 21.0151 20.0236 21.5786 23.2760 21.8245 23.6575 25.6725 23.6975 25,8404 28 2129 25.6454 28.1324 30.9057 27.6712 30.5390 33.7600 29.7781 33.0660 36.7856 41.6459 47.7271 54.8645 56.0849 66.4388 79.0582 73.6522 90.3203 111.4348 95 0255 120.7998 154.7620 1.0000 2.0700 3.2149 4.4399 5.7507 7.1533 8.6540 10.2598 11.9780 13.8164 15.7836 17.8885 20.1406 225505 25.1290 27.8881 30.8402 33.9990 37.3790 40.9955 63.2490 94.4508 138.2369 199.6351 1.0000 20800 3.2464 4.5061 5.8666 7.3359 8.9228 10.6366 12.4876 14.4866 16.6455 18.9771 21.4953 24 2149 27.1521 30.3243 33.7502 37.4502 41.4463 45.7620 73.1059 113.2832 172.3168 259 0565 1.0000 1.0000 1.0000 20900 2.1000 2.1200 3.2781 3.3100 3.3744 4.5731 4.6410 4.7793 5.9847 6.1051 6.3528 7.5233 7.7156 8.1152 9.2004 9.4872 10.0890 11.0285 11.4359 12 2997 13.0210 13.5795 14.7757 15.1929 15.9374 17,5487 17.5603 18.5312 20.6546 20.1407 213843 24.1331 22.9534 24,5227 28.0291 26.0192 27.9750 32.3926 29.3609 31.7725 37.2797 33.0034 35.9497 42.7533 36.9737 40.5447 48.8837 41.2013 45.5992 55.7497 46.0185 51.1591 63.4397 51.1601 57 2750 72.0524 84.7009 98.3471 133.3339 136.3075 164.4940 241.3327 215.7108 271.0244 431.6635 337.8824 442 5926 767 0914 1.0000 2.1500 34725 4.9934 6.7424 0.7537 11.0668 13.7260 16.7858 20.3037 24.3493 29.0017 34.3519 40.5047 47.5804 55.7175 65,0751 75.8354 88.2118 1024435 212.7930 434 7451 881.1702 1.779 0903 "Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4.000 per year for 6 yean asuming an annual interest rate of For (6.1= 8), the FV factor is 73359. 54.000 per year for 6 years accumulates to $29.343.60 (54,00 x 7.3359)