Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Question 1: Credit and liquidity risk Consider a bank that invests an amount y in risky assets (loans) at t=0. At t=2, each unit invested

image text in transcribed
image text in transcribed
Question 1: Credit and liquidity risk Consider a bank that invests an amount y in risky assets (loans) at t=0. At t=2, each unit invested in the risky asset will yield R>1 and so investment y will return yR. Bank's assets are funded with short-term debts, long-term debt / and equity e so that: y=s+l+e. The gross interest rate that short-term creditors receive from t=0 to t=1 is 1, the gross interest rate they receive from t=1 to t=2 is rs > 1, and the long-term creditors receiver, at t=2. A fraction a of short-term creditors do not rollover their debt at t=1 (i.e. as withdraw), where a has (approximation) a Normal distribution Nu,c). The bank can repay such creditors by liquidating the risky asset. When one unit of the risky asset is liquidated at t-1, it yields TR. Suppose y=100, e = 10,s=70, 120, r= 1.2. r, = 1.1, u = 0.6, T=0.5 and o=0.1. Table 1: Bank's balance sheet Assets Liabilities Short-term debts=70 Long-term debt I=20 Equity e=10 y=100 a) For what values of Ris the bank fundamentally insolvent? For what values of R is the bank fundamentally solvent? b) Suppose R =1.5 (so an investment of 100 would return 150 at t=2). What is the probability that the bank will be solvent at t=2? c) Suppose that at t=1, we learn that R=1.2 and a=0.9. The central bank decides to introduce an asset purchase program. What is the minimum price the central bank needs to buy the risky asset at to prevent the bank from failing? How much cash does the central need to conduct the asset purchase program at that price? Question2: Economic and regulatory capital Suppose the bank has a portfolio of risky assets that cost 100 at t=0. The bank finances the portfolio with debt (d) and equity (e), where d + e = 100. Suppose (approximation) the return R from the risky portfolio has a Normal distribution with mean u and standard deviation o at t= 1, with u = 110 and o = 10. a) Assume the value of bank debt outstanding is 97. What is the probability the bank will default? b) The bank wants to keep the probability of failure at a maximum of 5%. Calculate economic capital c) The regulator wants to keep the probability of default at 1%. Calculate regulatory capital. d) How does the bank's default probability change with its leverage (d/e) and the riskiness of the assets? Question 1: Credit and liquidity risk Consider a bank that invests an amount y in risky assets (loans) at t=0. At t=2, each unit invested in the risky asset will yield R>1 and so investment y will return yR. Bank's assets are funded with short-term debts, long-term debt / and equity e so that: y=s+l+e. The gross interest rate that short-term creditors receive from t=0 to t=1 is 1, the gross interest rate they receive from t=1 to t=2 is rs > 1, and the long-term creditors receiver, at t=2. A fraction a of short-term creditors do not rollover their debt at t=1 (i.e. as withdraw), where a has (approximation) a Normal distribution Nu,c). The bank can repay such creditors by liquidating the risky asset. When one unit of the risky asset is liquidated at t-1, it yields TR. Suppose y=100, e = 10,s=70, 120, r= 1.2. r, = 1.1, u = 0.6, T=0.5 and o=0.1. Table 1: Bank's balance sheet Assets Liabilities Short-term debts=70 Long-term debt I=20 Equity e=10 y=100 a) For what values of Ris the bank fundamentally insolvent? For what values of R is the bank fundamentally solvent? b) Suppose R =1.5 (so an investment of 100 would return 150 at t=2). What is the probability that the bank will be solvent at t=2? c) Suppose that at t=1, we learn that R=1.2 and a=0.9. The central bank decides to introduce an asset purchase program. What is the minimum price the central bank needs to buy the risky asset at to prevent the bank from failing? How much cash does the central need to conduct the asset purchase program at that price? Question2: Economic and regulatory capital Suppose the bank has a portfolio of risky assets that cost 100 at t=0. The bank finances the portfolio with debt (d) and equity (e), where d + e = 100. Suppose (approximation) the return R from the risky portfolio has a Normal distribution with mean u and standard deviation o at t= 1, with u = 110 and o = 10. a) Assume the value of bank debt outstanding is 97. What is the probability the bank will default? b) The bank wants to keep the probability of failure at a maximum of 5%. Calculate economic capital c) The regulator wants to keep the probability of default at 1%. Calculate regulatory capital. d) How does the bank's default probability change with its leverage (d/e) and the riskiness of the assets

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

The Meaningful Money Handbook

Authors: Pete Matthew

1st Edition

0857196510, 978-0857196514

More Books

Students also viewed these Finance questions

Question

Write a program to check an input year is leap or not.

Answered: 1 week ago

Question

Write short notes on departmentation.

Answered: 1 week ago

Question

What are the factors affecting organisation structure?

Answered: 1 week ago

Question

What are the features of Management?

Answered: 1 week ago

Question

Briefly explain the advantages of 'Management by Objectives'

Answered: 1 week ago

Question

Ensure continued excellence in people management.

Answered: 1 week ago

Question

Enhance the international team by recruiting the best people.

Answered: 1 week ago