Answered step by step
Verified Expert Solution
Link Copied!
Question
1 Approved Answer

Question 1 Sample Proportion. In a Wakefield Research survey, respondents were asked if they ever hesitated to give a handshake because of a fear of

Question 1

Sample Proportion.In a Wakefield Research survey, respondents were asked if they ever hesitated to give a handshake because of a fear of germs. Of the respondents, 411 answered "yes" and 592 said "no". What is the sample proportion of yes responses rounded to three decimal places?

Group of answer choices

0.410

0.590

0.180

0.360

Question 2

Hypothesis testing, Step 1: Stating the competing hypotheses. The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy.Fill in the blanksbelow to correctly state the competing hypotheses here:

H0: p = [ Select ] ["0.50", "0.82", "239", "291"]

H1:p [ Select ] ["greater than", "less than", "not equal to"] [ Select ] ["0.50", "0.82", "239", "291"]

Question 3

Hypothesis testing, Step 2: Deciding on a test statistic. The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy.Which of the following is the correct test statistic to test this claim?

Group of answer choices

Z-statistic for testing 1 proportion

Z-statistic for testing 2 proportions

Z-statistic for testing 1 mean

T-statistic for testing 1 mean

T-statistic for testing 2 means

Chi-square statistic for testing standard deviation

Question 4

Hypothesis testing, Step 3: Checking Assumptions. The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy.Given the test statistic from question #3, what assumptions are necessary to conduct this hypothesis test? Choose the correct values to fill in the following blanks

Requirement #1: The selected sample must be a [ Select ] ["simple random", "convenience", "cluster", ""] sample.

Requirement #2: The conditions for a [ Select ] ["binomial", "normal", "chi-square"] distribution must be met.

Requirement #3: Bothnp [ Select ] ["5", "25", "40"] andnq [ Select ] ["5", "25", "40"] so the the binomial distribution can be approximated with a normal distribution.

Question 5

Hypothesis testing, Step 3: Checking Assumptions(continued)The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy.Given the listed requirements fromtheprevious questions, are they all met.

Requirement #1: The selected sample must be a simple random sample: This is not mentioned in the question so in order to conduct this test, we need to assume this sample is a simple random sample. We will state it as such.

Requirement #2: The conditions for abinomialdistribution must be met.These requirements are met. There are 291 independent trials with the same probability from trial to trial and only two possible outcomes: boy or girl.

Requirement #3: Bothnp5andnq5so the the binomial distribution can be approximated with a normal distribution. This is very important and must be calculated each time to ensure that our binomial distribution is not overly skewed. If p, the proportion of successes is either very large or very small, the binomial distribution will be too skewed to approximate with a normal distribution. As such, we would need a different method to run this test. It is important to check BOTH parts of this.

1.) Calculate np. Enter the value for np below.

Question 6

Hypothesis testing, Step 3: Checking Assumptions(continued)The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy.Given the listed requirements fromtheprevious questions, are they all met.

Requirement #3: Bothnp5andnq5so the the binomial distribution can be approximated with a normal distribution. This is very important and must be calculated each time to ensure that our binomial distribution is not overly skewed. If p, the proportion of successes is either very large or very small, the binomial distribution will be too skewed to approximate with a normal distribution. As such, we would need a different method to run this test. It is important to check BOTH parts of this.

2.) Calculate nq. Enter the value for nq below.

Question 7

Hypothesis testing, Step 3: Checking Assumptions(conclusion)The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy.Given the listed requirements fromtheprevious questions, are they all met.

Requirement #1: The selected sample must be a simple random sample: This is not mentioned in the question so in order to conduct this test, we need to assume this sample is a simple random sample. We will state it as such.

Requirement #2: The conditions for abinomialdistribution must be met.These requirements are met. There are 291 independent trials with the same probability from trial to trial and only two possible outcomes: boy or girl.

Requirement #3: Bothnp5andnq5so the the binomial distribution can be approximated with a normal distribution. This is very important and must be calculated each time to ensure that our binomial distribution is not overly skewed. If p, the proportion of successes is either very large or very small, the binomial distribution will be too skewed to approximate with a normal distribution. As such, we would need a different method to run this test. It is important to check BOTH parts of this.

True/False: If we assume the selected sample is a simplerandom sample, then all of the requirements in this case are met to conduct the hypothesis test.

Group of answer choices

True

False

Question 8

Hypothesis testing, Step 4: Calculating the test statistic. The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy.What is the value of theteststatistic needed to test this claim?

1: Find the value of the test statistic following the instructions below:

a) Press STAT & scroll to TESTS & select "1-PropZTest..." (option 5 in TI83Plus) & pressEnter (for a hypothesis test of a claim involving one population).

b) Enter the following:

  • po = claimed value of the population proportion. It's the same value used in nullhypothesis.
  • x = number of successes calculated as n p = where n = sample size, p = sampleproportion. The sample proportion is obtained by: p = 239/291
  • n = sample size, which is 291

c) Highlight ">P0 and press ENTER

d) Highlight "Calculate" and press ENTER & make note of the calculations as you will needthem below.

Enter the value of the Z-Test statistic here. Round to two decimal places if necessary.

Question 9

Hypothesis testing, Step 4 continued: Calculating the p-value. The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy.Using the Z-score from the previous question, calculate the p-value.

2: To find the P-value of the given test z = 10.96, while testing the claim that p > 0.5, follow the instructions below:

a) Press 2nd & DISTR & select "normalcdf( b) Enter the z value followed by 1000, 0,1 and press ENTER. The generated output is the requiredP-value.

Which of the following represents the range the p-value values in?

Group of answer choices

p-value >0.10

0.05

0.01

p-value

Question 10

Hypothesis testing, Step 4 continued: Calculating the critical value. The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy. Findthecorrect critical value to test this claim

3: Tofind thecritical valuefollow the instructions below:

a) Press 2nd & DISTR & select "invNorm(

b) Enter the significance leveland press ENTER. The generated output is the critical value for a left-tailed test. Keep in mind this is a right tailed test.Note: If thesignificance level is not given, use 0.05. In this case, it is given as 0.01.

Choose the correct critical value for this test, keeping in mind it is a right tailed test.

Group of answer choices

-2.326

2.326

Question 11

Hypothesis testing, Step 5: Drawing statistical conclusion. The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy.What conclusion can be drawn?

The first way to draw a conclusion is to compare the critical value to the test statistic(Z-score).

Fillin the blanks to draw a statistical conclusion here.

Since the Z-score of [ Select ] ["10.96", "2.33"] is [ Select ] ["greater than", "less than"] the critical value of [ Select ] ["10.96", "2.33"] , we [ Select ] ["reject", "fail to reject"] the null hypothesis

Question 12

Hypothesis testing, Step 5: Drawing statistical conclusion(cont). The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy.What conclusion can be drawn?

The second way to draw a conclusion is to compare the p-value to the significance level.

Fillin the blanks to draw a statistical conclusion here.

Since the p-value is [ Select ] ["greater than", "less than", "equal to", ""] thesignificance level of [ Select ] ["0.01", "0.05"] , we [ Select ] ["reject", "fail to reject"] the null hypothesis

Question 13

Hypothesis testing, Step 5: Layman's conclusion. The Genetics & IVF Institute conducted a clinical trial of the YSORT method designed to increase the probability of conceiving a boy. As of this writing, 291 babies were born to parents using the YSORT method, and 239 of them were boys. Use a 0.01 significance level to test the claim that the YSORT method is effective in increasing the likelihood that a baby will be a boy.What conclusion can be drawn?

After drawing a statistical conclusion, we would put the conclusion into words for other's to follow.

Fillin the blanks to draw a layman's conclusion here.

The results of this study seem to indicate the the YSORT method is [ Select ] ["effective", "not effective.", "", ""] in increasing the likelihood that a boy will be a boy.

Question 14

Nicotine Patches. In one study of smokers who tried to quit smoking with nicotine patch therapy, 39 were smoking one year after the treatment and 32 were not smoking one year after the treatment (based on data from "High-Dose Nicotine Patch Therapy," by Dale et al., Journal of the American Medical Association, Vol. 274, No, 17). Use a 0.05 significance level to test the claim that among smokers who try to quit with nicotine patch therapy, the majority are smoking a year after the treatment. What do these results suggest about the effectiveness of nicotine patch therapy for those trying to quit smoking?

the 5 steps should match the steps in the example posted in the example here: Hypothesis Testing for Proportions in 5 Steps.pdfDownload Hypothesis Testing for Proportions in 5 Steps.pdf

Use the first 13 questions of this lab as a guide.

image text in transcribedimage text in transcribedimage text in transcribed
C My Overvie X UB Quiz: Lab A X Hypothesis X UB Topic: New X K! Kahoot! X A Homework X *Course Her X My Progres X + X C O File | C:/Users/joanna/Downloads/Hypothesis%20Testing%20for%20Proportions%20in%205%20Steps.pdf E Hypothesis Testing for Proportions in 5 Steps.pdf 1 / 3 50% + Hypothesis Testing in 5 Steps For all questions throughout the semester that ask you to complete a hypothesis test, please use this outline. It is adaptable to difference situations that ask you to complete a hypothesis test. Step #1: State the hypotheses Sometimes it is helpful to write out the hypothesis in words first then in symbolic form. Always include the symbolic form Be sure you have the correct symbols. Is the test about the population mean? Population standard deviation? Population proportion? Choosing the correct symbol is important. (Notice the word population in all of these: Hypothesis testing is based on population values. Never use sample statistic symbols here, only population symbols . For the null hypothesis, there is only one option: (based on equality Ho: 6= For the alternative hypothesis, there are three options based on the problem H1:6> H1:8 0.50 (alternative is directional. Notice the symbol for the population mean) In words: (This is optional but can be helpful) H.: The population proportion of babies that are boys is 50%% H1: The population proportion of babies that are boys is greater than 50% 2.) Choose a test statistic in this example, we are dealing with a single sample and testing the sample proportion. We can use a Z-Statistic. As the value for alpha is stated in the problem, we use a = 0.01 with a = 0.01 P(1 - P) 3.) State the assumptions First, we need to assume the sample is a random sample so that it represents the population well. In this problem, this information is not stated so we need to state it here. We are assuming the sample is a simple random sample as it is not stated in the problem. . Second, we need to check to see if the requirements for a binomial distribution are met. In this example, there are 291 independent trials with only 2 possible outcomes. The probability remains constant from trial to trail. Therefoe, the requirements for a binomial distribution are met . Third, we need to test the sample size. In this case, testing that np 2 5 and nq 2 5 291(0.82) = 293 2 5 2 291(0.18) = 52 2 5 Therefore, this requirement is met. 4.) Calculations a.) 1st, the test statistic: (This is always based on the statistic chosen in step 2) 2 - 0.82 - 0.50 = 10.96 0.50 - 0.50 291 b.) 2nd, we can calculate the p-value. (Here, you have the option of either the p-value or a critical value. In this case, I used the p-value. Keep in mind, your conclusion will be the same either way.) Hypothesis Testing.pdf Hypothesis Testing..pdf ~ D Cliff Edge Image Ph.gif Show all X Type here to search 14% 5:57 PM 10/31/2022C My Overvie X UB Quiz: Lab A X Hypothesis X UB Topic: New X K! Kahoot! X A Homework X *Course Her X My Progres X + X C O File | C:/Users/joanna/Downloads/Hypothesis%20Testing%20for%20Proportions%20in%205%20Steps.pdf E Hypothesis Testing for Proportions in 5 Steps.pdf 2 / 3 50% + With a = 0.01 P(1 - P) 3.) State the assumptions First, we need to assume the sample is a random sample so that it represents the population well. In this problem, this information is not stated so we need to state it here. We are assuming the sample is a simple random sample as it is not stated in the problem. . Second, we need to check to see if the requirements for a binomial distribution are met. In this example, there are 291 independent trials with only 2 possible outcomes. The probability remains constant from trial to trail. Therefoe, the requirements for a binomial distribution are met Third, we need to test the sample size. In this case, testing that np 2 5 and nq 2 5 291(0.82) = 293 2 5 291(0.18) = 52 2 5 Therefore, this requirement is met. 4.) Calculations: a.) 1st, the test statistic: (This is always based on the statistic chosen in step 2) 2 0.82 - 0.50 10.96 9.50 . 0.50 291 b.) 2nd, we can calculate the p-value. (Here, you have the option of either the p-value or a critical value. In this case, I used the p-value. Keep in mind, your conclusion will be the same either way. P - value = P(Z > 10.96)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image
Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Trigonometry

Authors: Ron Larson

9th Edition

128560718X, 9781285607184

More Books

Students explore these related Mathematics questions

Question

thite =9

Answered: 3 weeks ago

Question

Behaviour: What am I doing?

Answered: 3 weeks ago