Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Question 2. Look at the data set on Moodle (20 firms of data). Use this data to run an Excel regression model to predict whether
Question 2.
Look at the data set on Moodle (20 firms of data). Use this data to run an Excel regression model to predict whether a firm will go bankrupt or not.
If the Y value of the firm exceeds 0.5, the firm is predicted to be not bankrupt NB. Using that critical value for Y, make a prediction B or NB for each firm in the set.
Compare the predictions with the actuals to find how many Type I errors are made and how many Type II errors. A Type I error is when you predict NB but the firm goes bankrupt.
Extra Question 3.
- Instead of 0.5, you can try different hurdle points to see how this affects the frequency of Type I and Type II errors. If we assume that the cost of a type I error is 3 and the cost of a Type II error is 1, find the hurdle point that =gives the lowest average cost across the sample.
- Is the hurdle that gives the lowest expected cost best? Instead, consider also the variance of the cost (remember that higher variance is bad). Trying increasing hurdles of 0,1, 0.2, 0.3, ....etc. plot a graph of the expected cost against the variance of cost and come to a conclusion about which is the best hurdle point.
SUMMARY OUTPUT | You can change the green cells | ||||||||||||||
Regression Statistics | |||||||||||||||
Multiple R | 0.652677 | ||||||||||||||
R Square | 0.425987 | ||||||||||||||
Adjusted R Square | 0.318359 | ||||||||||||||
Standard Error | 0.423532 | ||||||||||||||
Observations | 20 | ||||||||||||||
ANOVA | 3 | Type 1 error cost | |||||||||||||
df | SS | MS | F | Significance F | 1 | Type 2 error cost | |||||||||
Regression | 3 | 2.129934 | 0.709978 | 3.957975 | 0.027493 | ||||||||||
Residual | 16 | 2.870066 | 0.179379 | ||||||||||||
Total | 19 | 5 | |||||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | ||||||||
Intercept | 0.23907 | 0.197539 | 1.210241 | 0.243763 | -0.17969 | 0.65783409 | -0.17969 | 0.657834 | |||||||
X Variable 1 | 0.348304 | 0.129368 | 2.692349 | 0.016021 | 0.074056 | 0.62255268 | 0.074056 | 0.622553 | |||||||
X Variable 2 | -0.12267 | 0.103381 | -1.18662 | 0.2527 | -0.34183 | 0.09648484 | -0.34183 | 0.096485 | |||||||
X Variable 3 | 0.375785 | 0.184133 | 2.04084 | 0.058122 | -0.01456 | 0.76612875 | -0.01456 | 0.766129 | |||||||
0.3 | <----hurdle | ||||||||||||||
firm | outcome | Y estimate | Prediction | Error Cost | Sqd dev | ||||||||||
RESIDUAL OUTPUT | 1 | 1 | 1.34215277 | 1 | OK | 0 | 0.64 | ||||||||
2 | 1 | 0.86243128 | 1 | OK | 0 | 0.64 | |||||||||
Observation | Predicted Y | Residuals | 3 | 1 | 0.41521135 | 1 | OK | 0 | 0.64 | ||||||
1 | 1.342153 | -0.34215 | 4 | 1 | 0.94195109 | 1 | OK | 0 | 0.64 | ||||||
2 | 0.862431 | 0.137569 | 5 | 1 | 0.78281439 | 1 | OK | 0 | 0.64 | ||||||
3 | 0.415211 | 0.584789 | 6 | 1 | 0.16684822 | 0 | error | 1 | 0.04 | ||||||
4 | 0.941951 | 0.058049 | 7 | 1 | 0.55658448 | 1 | OK | 0 | 0.64 | ||||||
5 | 0.782814 | 0.217186 | 8 | 1 | 0.59844618 | 1 | OK | 0 | 0.64 | ||||||
6 | 0.166848 | 0.833152 | 9 | 1 | 0.36817562 | 1 | OK | 0 | 0.64 | ||||||
7 | 0.556584 | 0.443416 | 10 | 1 | 1.0953188 | 1 | OK | 0 | 0.64 | ||||||
8 | 0.598446 | 0.401554 | 11 | 0 | 0.39150058 | 1 | error | 3 | 4.84 | ||||||
9 | 0.368176 | 0.631824 | 12 | 0 | 0.31029927 | 1 | error | 3 | 4.84 | ||||||
10 | 1.095319 | -0.09532 | 13 | 0 | 0.22765837 | 0 | OK | 0 | 0.64 | ||||||
11 | 0.391501 | -0.3915 | 14 | 0 | 0.36139001 | 1 | error | 3 | 4.84 | ||||||
12 | 0.310299 | -0.3103 | 15 | 0 | 0.22709964 | 0 | OK | 0 | 0.64 | ||||||
13 | 0.227658 | -0.22766 | 16 | 0 | 0.12436256 | 0 | OK | 0 | 0.64 | ||||||
14 | 0.36139 | -0.36139 | 17 | 0 | 0.2879538 | 0 | OK | 0 | 0.64 | ||||||
15 | 0.2271 | -0.2271 | 18 | 0 | 0.31117108 | 1 | error | 3 | 4.84 | ||||||
16 | 0.124363 | -0.12436 | 19 | 0 | 0.36381284 | 1 | error | 3 | 4.84 | ||||||
17 | 0.287954 | -0.28795 | 20 | 0 | 0.26481768 | 0 | OK | 0 | 0.64 | ||||||
18 | 0.311171 | -0.31117 | 0.8 | <-----expected error cost | |||||||||||
19 | 0.363813 | -0.36381 | |||||||||||||
20 | 0.264818 | -0.26482 | 1.7474 | <------variance of cost | |||||||||||
1.7474 | <---variance another way | ||||||||||||||
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started