Requieu HTOI TITOLIONI Problem 11-2A Analyzing and computing payback period, accounting rate of return, and net present value LO P1, P2, P3 [The following information applies to the questions displayed below) Most Company has an opportunity to invest in one of two new projects Project Y requires a $310,000 investment for new machinery with a four-year life and no salvage value. Project Z requires a $310,000 investment for new machinery with a three-year life and no salvage value. The two projects yield the following predicted annual results. The company uses straight-line depreciation, and cash flows occur evenly throughout each year. (PV of $1. FV of $1. PVA of $1, and EVA of $1 >(Use appropriate factor(s) from the tables provided.) Project Y Project z $365,000 $292,800 Sales Expenses Direct materials Direct labor Overhead including depreciation Selling and administrative expenses Total expenses Pretax income Income taxes (28%) Net Income 51, 100 36,500 73,000 43,800 131,400 131,400 26,600 26,000 281,500 237, 700 83,500 54,300 23,380 15,204 $ 60, 120 $ 39,096 w Total expenses Pretax income Income taxes (28%) Net income 281,500 83,500 23,380 $ 60, 120 237,700 54,300 15,204 $ 39,096 Problem 11-2A Part 2 2. Determine each project's payback period. Payback Period Choose Denominator: Choose Numerator: Payback Period Payback period 0 Project Y Project Z 1 1 1 0 TABLE B.1. Present Value of 1 p=1/(1+iY Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 0.9901 0.9803 0.9706 0.9610 0.9515 0.9420 0.9327 0.9235 0.9143 0.9053 0.8963 0.8874 0.8787 0.8700 0.8613 0.8528 0.8444 0.8360 0.8277 0.8195 0.7798 0.7419 0.7059 0.6717 0.9804 0.9612 0.9423 0.9238 0.9057 0.8880 0.8706 0.8535 0.8368 0.8203 0.8043 0.7885 0.7730 0.7579 0.7430 0.7284 0.7142 0.7002 0.6864 0.6730 0.6095 0.5521 0.5000 0.4529 0.9709 0.9426 0.9151 0.8885 0.8626 0.8375 0.8131 0.7894 0.7664 0.7441 0.7224 0.7014 0.6810 0.6611 0.6419 0.6232 0.6050 0.5874 0.5703 0.5537 0,4776 0.4120 0.3554 0.3066 0.9615 0.9246 0.8890 0.8548 0.8219 0.7903 0.7599 0.7307 0.7026 0.6756 0.6496 0.6246 0.6006 0.5775 0.5558 0.5339 0.5134 0.4936 0.4746 0.4564 0.3751 0.3083 0.2534 0.2083 0.9524 0.9070 0.8638 0.8227 0.7835 0.7462 0.7107 0.6768 0.6446 0.6139 0.5847 0.5568 0.5303 0.5051 0.4810 0.4581 0.4363 0.4155 0.3957 0.3769 0.2953 0.2314 0.1813 0.1420 0.9434 0.8900 0.8396 0.7921 0.7473 0.7050 0.6651 0.6274 0.5919 0.5584 0.5268 0.4970 0.4688 0.4423 0.4173 0.3936 0.3714 0.3503 0.3305 0.3118 0.2330 0.1741 0.1301 0.0972 0.9346 0.8734 0.8163 0.7629 0.7130 0.6663 0.6227 0.5820 0.5439 0.5083 0.4751 0.4440 0.4150 0.3878 0.3624 0.3387 0.3166 0.2959 0.2765 0.2584 0.1842 0.1314 0.0937 0.0668 0.9259 0.8573 0.7938 0.7350 0.6806 0.6302 0.5835 0.5403 0.5002 0.4632 0.4289 0.3971 0.3677 0.3405 0.3152 0.2919 0.2703 0.2502 0.2317 0.2145 0.1460 0.0994 0.0676 0.0460 0.9174 0.8417 0.7722 0.7084 0.6499 0.5963 0.5470 0.5019 0.4604 0.4224 0.3875 0.3555 0.3262 0.2992 0.2745 0.2519 0.2311 0.2120 0.1945 0.1784 0.1160 0.0754 0.0490 0.0318 0.9091 0.8264 0.7513 0.6830 0.6209 0.5645 0.5132 0.4665 0.4241 0.3855 0.3505 0.3186 0.2897 0.2633 0.2394 0.2176 0.1978 0.1799 0.1635 0.1486 0.0923 0.0573 0.0356 0.0221 0.8929 0.7972 0.7118 0.6355 0.5674 0.5066 0.4523 0.4039 0.3606 0.3220 0.2875 0.2567 0.2292 0.2046 0.1827 0.1631 0.1456 0.1300 0.1161 0.1037 0.0588 0.0334 0.0189 0.0107 0.8696 0.7561 0.6575 0.5718 0.4972 0.4323 0.3759 0.3269 0.2843 0.2472 0.2149 0.1869 0.1625 0.1413 0.1229 0.1069 0.0929 0.0808 0.0703 0.0611 0.0304 0.0151 0.0075 0.0037 Used to compute the present value of a known furement For example: How much would you need to investidy 105 compounded semmily to accumulate 5500 in 6 years from today? Using the faction of wandi - 52 semiannual periodi and annualue of 5), the fact 0.3568. You would need to invest2.7 today (55800X0.5565) TABLE B.2 Future Value of 1 f=(1 + i Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 0 1.0000 1 1.0100 2 1.0201 3 1.0303 41.0406 5 1.0510 6 1.0615 7 1.0721 8 1.0829 9 1.0937 10 1.1046 11 1.1157 12 1.1268 13 1.1381 14 1.1495 15 1.1610 16 1.1726 17 1.1843 18 1.1961 19 1.2081 20 1.2202 25 1.2824 30 1.3478 35 1.4166 40 1.4889 1.0000 1.0200 1,0404 1.0612 1,0824 1.1041 1.1262 1.1487 1.1717 1.1951 1.2190 1.2434 1.2682 1.2936 1.3195 1.3459 1.3728 1.4002 1.4282 1.4568 1.4859 1.6406 1.8114 1.9999 22080 1.0000 1.0300 1.0609 1.0927 1.1255 1.1593 1.1941 1.2299 1.2668 1.3048 1.3439 1.3842 1.4258 1.4685 1.5126 1.5580 1.6047 1.6528 1.7024 1.7535 1.8061 2.0938 2.4273 28139 3.2620 1.0000 1.0400 1.0816 1.1249 1.1699 1.2167 1.2653 1.3159 1.3686 1.4233 1.4802 1.5395 1.6010 1.6651 1.7317 1.8009 1.8730 1.9479 2.0258 2.1068 2.1911 2.6658 3.2434 3.9461 4.8010 1.0000 1.0500 1.1025 1.1576 1.2155 1.2763 1.3401 1.4071 1.4775 1.5513 1.6289 1.7103 1.7959 1.8856 1.9799 2.0789 2.1829 2.2920 2.4066 2.5270 26533 3.3864 43219 5.5160 7.0400 1.0000 1.0600 1.1236 1.1910 1.2625 1.3382 1.4185 1.5036 1.5938 1.6895 1.7908 1.8983 20122 2.1329 2.2609 2.3966 2.5404 26928 28543 3.0256 3.2071 4,2919 5.7435 7.6861 10.2857 1.0000 1.0700 1.1449 1.2250 1.3108 1.4026 1.5007 1.6058 1.7182 1.8385 1.9672 2.1049 2.2522 24098 2.5785 2.7590 2.9522 3.1588 33799 3.6165 3.8697 5.4274 7,6123 10.6766 149745 1.0000 1.0800 1.1664 1.2597 13605 1.4693 1.5869 1.7138 1.8509 1.9990 2.1589 2.3316 2.5182 2.7196 2.9372 3.1722 3.4259 3.7000 3.9960 4.3157 4,6610 6.8485 10.0627 14.7853 21.7245 1.0000 1.0900 1.1881 1.2950 1.4116 1.5386 1.6771 1.8280 19926 2.1719 2.3674 2.5804 2.8127 3.0658 3.3417 3.6425 3.9703 4.3276 4.7171 5.1412 5.6044 8.6231 13.2677 20 4140 31.4094 1.0000 1.1000 1.2100 1.3310 1.4641 1.6105 1.7716 1.9487 2.1436 2.3579 2.5937 2.8531 3.1384 3.4523 3.7975 4.1772 4.5950 5.0545 5.5599 6.1159 6.7275 10.8347 17.4494 28.1024 45.2593 1.0000 1.1200 1.2544 1.4049 1.5735 1.7623 1.9738 2.2107 2.4760 2.7731 3.1058 3.4785 3.8960 4.3635 4.8871 5.4736 6.1304 6.8650 7.6900 8.6128 9.6463 17.0001 29.9599 52 7996 93.0510 1.0000 1.1500 1.3225 1.5209 1.7490 20114 23131 26600 3.0590 3.5179 4.0456 46524 5.3503 6.1528 7.0757 8.1371 9.3576 10.7613 12 3755 14 2318 16.3665 32.9190 66.2118 133.1755 267.8635 Used to compare the future value of a known present amount. For example: What is the accumulated value of 53.000 invested today 8 compounded quarterly 5 years? Using the factors of 21 and 28:30 quarterly periods and a quarterly interest rate of 26 the factori 4850. The accumuled value is 54,457.70 (1000x14559) P= 1 (1 + i)" TABLE B.3: Present Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 0.9901 1.9704 2.9410 3.9020 4.8534 5.7955 6.7282 7.6517 8.5660 9.4713 10.3676 11.2551 12.1337 13.0037 13.8651 14.7179 15.5623 16.3983 17.2260 18.0456 22.0232 25.8077 29.4086 32.8347 0.9804 1.9416 2.8839 3.8077 4.7135 5.6014 6.4720 7.3255 8.1622 8.9826 9.7868 10.5753 11.3484 12.1062 12.8493 13.5777 14.2919 14.9920 15.6785 16.3514 19.5235 223965 24 9986 27.3555 0.9709 1.9135 2.8286 3.7171 4.5797 5.4172 6.2303 7.0197 7.7861 8.5302 9.2526 9.9540 10.6350 11.2961 119379 12.5611 13.1661 13.7535 14.3238 14.8775 17.4131 19.6004 21.4872 23.1148 0.9615 1.8861 2.7751 3.6299 4.4518 5.2421 6.0021 6.7327 7.4353 8.1109 8.7605 9.3851 9.9856 10.5631 11.1184 11.6523 12.1657 12.6593 13.1339 13.5903 15.6221 17.2920 18,6646 19.7928 0.9524 1.8594 27232 35460 4.3295 5.0757 5.7864 6.4632 7.1078 7.7217 8.3064 8.8633 9.3936 9.8986 10.3797 10.8378 11.2741 11,6896 12.0853 12.4622 14.0939 15.3725 16.3742 17.1591 0.9434 1.8334 2.6730 3.4651 4.2124 4.9173 5.5824 6.2098 6.8017 7.3601 7.8869 8.3838 8.8527 9.2950 9.7122 10.1059 10.4773 10.8276 11.1581 11.4699 12.7834 13.7648 14.4982 15.0463 0.9346 1.8080 2.6243 3.3872 4.1002 4.7665 5.3893 5.9713 6.5152 7.0236 7.4987 7.9427 8.3577 8.7455 9.1079 9.4466 9.7632 10.0591 10.3356 10.5940 11.6536 12.4090 12.9477 13.3317 0.9259 1.7833 25771 3.3121 3.9927 4.6229 5.2064 5.7466 6.2469 6.7101 7.1390 7.5361 7.9038 8.2442 8.5595 8.8514 9.1216 9.3719 9.6036 9.8181 10.6748 11.2578 11,6546 11.9246 0.9174 1.7591 25313 3.2397 3.8897 4.4859 5.0330 5.5348 5.9952 6.4177 6.8052 7.1607 7.4869 7.7862 8.0607 8.3126 8.5436 8.7556 8.9501 9.1285 9.8226 10,2737 10.5668 10.7574 0.9091 1.7355 24869 3.1699 3.7908 4.3553 4.8684 5.3349 5.7590 6.1446 6.4951 6.8137 7.1034 7.3667 7.6061 7.8237 8.0216 8.2014 8.3649 8.5136 9.0770 9.4269 9.6442 9.7791 0.8929 1.6901 2.4018 3.0373 3.6048 4.1114 4.5638 4.9676 5.3282 5.6502 5.9377 6.1944 6.4235 6.6282 6.8109 6.9740 7.1196 7.2497 7.3658 7.4694 7.8431 8,0552 8.1755 8.2438 0.8696 1.6257 2.2832 28550 3.3522 3.7845 4.1604 4.4873 4.7716 5.0188 5.2337 5.4206 5.5831 5.7245 5.8474 5.9542 60472 6.1280 6.1982 6.2593 6.4641 6.5660 6.6166 6.6418 *Used to calculate the present value of aries of equal payments made at the end of each period. For example: What is the print value of $2.000 per year for 10 years assuming an annual interest rate of For - 10.19%), the PV factor is 64177.52.000 per year for 10 years in the equivalent of 512.835 today (52.000 X 6.41773 f=[(1 +1)-11/ TABLE B.4! Future Value of an Annuity of 1 Rate Periods Periods 1% 2% 3% 5% 6% 7% 8% 9% 10% 12% 15% 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 1.0000 1.0000 1.0000 20100 2.0200 20300 3,0301 3.0604 3.0909 4.0604 4.1216 4. 1836 5.1010 5.2040 5.3091 6.1520 6.3081 6.4684 7.2135 7.4343 7.6625 8.2857 8.5830 8.8923 9.3685 9.7546 10.1591 10.4622 10.9497 11.4639 11.5668 12.1687 12.8078 12.6825 13.4121 14.1920 13.8093 14.6803 15.6178 14.9474 15.9739 17.0863 16.0969 17.2934 18.5989 17.2579 18.6393 20.1569 18.4304 20.0121 21.7616 19.6147 21.4123 23.4144 20.8109 22.8406 25.1169 22.0190 24.2974 26.8704 28.2432 320303 36.4593 34.7849 40.5681 47,5754 41.6603 49.9945 60.4621 48.8864 60 4020 75.4013 1.0000 1.0000 20400 2.0500 3.1216 3.1525 4.2465 4.3101 5.4163 5.5256 6.6330 6.8019 7.8983 8.1420 9.2142 9.5491 105828 11.0266 12.0061 12.5779 13.4864 14,2068 15.0258 15.9171 16.6268 17.7130 18.2919 19.5986 20.0236 21.5786 21.8245 23.6575 23.6975 25.8404 25.6454 28.1324 27.6712 30.5390 29.7781 33.0660 41.6459 47.7271 56.0849 66.4388 73.6522 90.3203 95.0255 20.7998 1.0000 20600 3.1836 4.3746 5.6371 6.9753 8.3938 9.8975 11.4913 13.1808 14.9716 16,8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 54 8645 79.0582 111.4348 154.7520 1.0000 20700 3.2149 4.4399 5.7507 7.1533 8.6540 10.2598 11.9780 13.8164 15.7836 17.8885 20.1406 225505 25.1290 27.8881 30.8402 33.9990 37.3790 40.9955 63.2490 94.4608 138 2369 199.6351 1.0000 20800 3.2464 4.5061 5.8666 7.3359 8.9228 10.6366 124876 14.4866 16.6455 18.9771 21.4953 24.2149 27.1521 30.3243 33.7502 37.4502 41.4463 45.7620 73.1059 113.2832 1723168 259.0565 1.0000 1.0000 1.0000 20900 2.1000 2.1200 3.2781 3.3100 3.3744 45731 4.6410 4.7793 5.9847 6.1051 6.3528 7.5233 7.7156 8.1152 9.2004 9.4872 10.0890 11.0285 11.4359 12 2997 13.0210 13.5795 14.7757 15.1929 15.9374 17.5487 17.5603 18.5312 20.6546 20.1407 21.3843 24.1331 22.9534 24.5227 28.0291 26.0192 27.9750 32.3926 29.3609 31.7725 37.2797 33.0034 35.9497 42.7533 36.9737 40.5447 48.8837 413013 45.5992 55.7497 460185 51.1591 63.4397 51.1601 57.2750 72.0524 84.7009 98.3471 133.3339 136,3075 164 4940 2413327 215.7108 2710244 431.6635 337.8824 442 5926 767,0914 1.0000 2.1500 3.4725 4.9934 6.7424 8.7537 11.0668 13.7268 16.7858 20.3037 24.3493 29.0017 34 3519 40.5047 47.5804 55.7175 65.0751 75.8364 88.2118 102.4436 212.7930 434,7451 881.1702 1.779.0903 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4.000 per year for 6 years assuming an annual interest rate of 8? For 1-3), the factor is 7.3350, 54.000 per year for years accumulates to $29.345.60 (54.000 7.33591