Required information Problem 14-11AC Capital lease accounting LO C3 The following information applies to the questions displayed below. Rogers Company signs a five-year capital lease with Packer Company for office equipment. The annual year-end lease payment is $24,000, and the interest rte is 7%.CableBL Table B2. TableB3, and Table BA (Use appropriate factor(s) from the tables provided.) Problem 14-11AC Part 1 1. Complete the below table to calculate the present value of Rogers's five-year lease payments. Lease Payment Amount Present value of lease payments PV Factor 24,00of Required information Problem 14-11AC Capital lease accounting LO C3 The following information applies to the questions displayed below. Rogers Company signs a five-year capital lease with Packer Company for office equipment. The annual year-end lease payment is $24,000, and the interest rate is 7%.CableBI, Table B.2. TableB3, and TableBA) (Use appropriate factor(s) from the tables provided.) Problem 14-11AC Part 2 2. Prepare the journal entry to record Rogers's capital lease at its inception. View transaction list Journal entry worksheet Record the capital lease of office equipment. Note: Enter debits before credits Transaction General Journal Debit Credit Leased asset Office equipment ease liability Required information Problem 14-11AC Capital lease accounting LO C3 The following information applies to the questions displayed below Rogers Company signs a five-year capital lease with Packer Company for office equipment. The annual year-end lease payment is $24,000, and the interest rate is 7%.CableBI, Table B.2. Table 3, and TableBA) (Use appropriate factor(s) from the tables provided.) Problem 14-11AC Part 3 3. Complete a lease payment schedule for the five years of the lease with the following headings. Assume that the beginning balance of the lease liability is the present value of lease payments. Cash Beginning Balance of Ending Balance of Lease Liability Period Ending Date Year 1 Year 2 Year 3 Year 4 Year 5 Total ofInterest on Interest on Reduction of Lease Liability Lease Liability Lease Lease Liabil Problem 14-11AC Part 4 4. Use straight-line depreciation and prepare the journal entry to depreciate the leased asset at the end of year 1. Assume zero salvage value and a five-year life for the office equipment. View transaction list Journal entry worksheet Record the annual depreciation expense on the office equipment at the end of year 1 Note: Enter debits before credits Transaction General Journal Debit Credit Record entry Clear entry View general journal TABLE B.1 Present Value of1 Perlods 1% 5% 7% 10% 12% 15% 0.9901 .9804 0.9709 09615 0.9524 0.9434 0.9346 09259 0.9174 0.909 0.8929 0.8696 0.9803 0.9612 0.9426 0.9246 0.9070 08900 0.8734 0.8573 0.8417 08264 0.7972 0.7561 0.9706 09423 09151 0.8890 08638 08396 0.8163 07938 0,7722 0.7513 0.7118 0.6575 0.9610 0.9238 0.8885 0.8548 0.8227 0.7921 0.7629 07350 0.7084 06830 0.6355 0.5718 0.9515 0.9057 0.8626 0.8219 0.7835 0.7473 0.7130 0.6806 0.6499 0.6209 0.5674 0.4972 0.9420 08880 0.8375 0.7903 0.7462 0.7050 0.6663 0.6302 0.5963 0.5645 0.5066 0.4323 0.9327 0.8706 0.8131 0.7599 0.7107 0.6651 0.6227 0.5835 0.5470 05132 0.4523 0.3759 0.9235 0.8535 0.7894 0.7307 0.6768 0.6274 0.5820 0.5403 0.5019 0.4665 0.4039 0.3269 0.9143 0.8368 0.7664 0.7026 0.6446 0.5919 0.5439 05002 0.4604 0.4241 0.3606 0.2843 10 0.9053 08203 0.7441 0.6756 0.6139 0.5584 0.5083 0.4632 0.4224 0.3855 0.3220 0.2472 0.8963 0.8043 0.7224 0.6496 0.5847 05268 0.475 0.4289 0.3875 0.3505 0.2875 0.2149 0.8874 0.7885 0.7014 0.6246 0.5568 0.4970 0.4440 0.3971 0.3555 0.3186 0.2567 0.1869 0.8787 0.7730 0.6810 0.6006 0.5303 04688 0.4150 0.3677 0.3262 02897 0.2292 0.1625 14 0.8700 0.7579 0.6611 0.5775 0.5051 0.4423 0.3878 0.3405 0.2992 0.2533 0.2046 0.1413 15 0.8613 0.7430 0.6419 0.5553 04810.4173 0.3624 0.3152 0.2745 02394 0.1827 0.1229 16 0.8528 0.7284 0.6232 0.5339 0.4581 0.3936 0.3387 0.2919 0.2519 0.2176 0.1631 0.1069 17 0.8444 0.7142 0.6050 0.5134 0.4363 03714 0.3166 0.2703 0.2311 0.1978 0.1456 0.0929 18 0.8360 0.7002 0.5874 0.4936 0.4155 0.3503 0.2959 0.2502 0.2120 .1799 0.1300 0.0808 19 0.8277 0.6864 0.5703 0.4746 0.3957 03305 0.2765 0.2317 0.1945 0.1635 0.1161 0.0703 20 0.8195 0.6730 0.5537 0.4564 0.3769 03118 0.2584 0.2145 0.1784 0.1486 0.1037 0.0611 25 0.7798 0.6095 0.4776 0.3751 0.2953 0.2330 0.1842 0.1460 0.1160 0.0923 0.0588 0.0304 0.7419 0.5521 0.4120 0.3083 0.2314 0.1741 0.1314 0.0994 0.0754 0.0573 0.0334 0.0151 0.7059 0.5000 0.3554 0.2534 0.1813 01301 0.0937 0.0676 0.0490 00356 0.0189 0.0075 0.6717 0.4529 0.3066 0.2083 0.1420 0.0972 0.0668 0.0460 0.0318 0.0221 0.0107 0.0037 Used to compute the present value of a known future amunt. Freunple: kw much would you need to mestoiry at 10% compounded eman uany to accurm late sso on 6 years from olay? Usingthe factors of": 12and 5%(12sernannal periods and a emiann al rae of 5%),the fci r isO5568. You would teedtonet n784 kdy SS00) x 05568). TABLE B.2 Future Value of Porlods 1% 5% 7% 8% 10% 12% 15% 1.0000 1.0000 10000 10000 10000 1.0000 10000 10000 10000 10000 10000 1 1.0100 1.0200 1.0300 10400 10500 1.0600 10700 1.0800 10900 1.1000 1200 1.1500 210201 10404 10609 10816 .1025 236 .1449 .1664 .1881 2100 .2544 1.3225 31.0303 1.0612 10927 .1249 76 910 2250 2597 .2950 3310 1.4049 1.5209 4 1.0406 1.0824 1.1255 1.1699 1.2155 12625 1.3108 1.3605 1.4116 464 1.5735 1.7490 5 1.0510 1.1041 1.1593 1.2167 1.2763 3382 1.4026 1.4693 1.53861.6105 1.7623 2.0114 6 1.0615 1.1262 1.1941 12653 1.3401 1.4185 1.5007 1.5869 1.6771 1.7716 1.9738 2.3131 71.0721 1.1487 1.2299 3159 1407 5036 6058 17138 18280 .9487 2.2107 26600 8 1.0829 1.1717 1.2668 13686 1.4775 1.5938 17182 1.8509 1.9926 2.1436 2.4760 3.0590 9 1.0937 1.1951 13048 1.4233 1.5513 1.6895 1.8385 1.9990 2.1719 2.3579 2.7731 3.5179 10 1.1046 1.2190 1.3439 1.4802 1.6289 1.7908 1.9672 2.1589 2.3674 2.597 3.1058 4.0456 11 1.1157 1.2434 1.3842 1.5395 1.7103 18983 2.1049 2.3316 2.5804 2.8531 3.4785 4.6524 12 11268 2682 1.4258 1.6010 1.7959 20122 2.2522 2.5182 2.8127 31384 3.8960 5.3503 13 1.1381 1.2936 1.4685 1.6651 1.8856 2.1329 2.4098 2.7196 3.0658 3.4523 4.3635 6.1528 14 11495 13195 15126 1.7317 1.9799 2.2609 2.5785 2.9372 3.3417 37975 4.8871 70757 15 1.1610 1.3459 .5580 8009 2.0789 2.3966 2.7590 3.1722 3.6425 4.1772 5.4736 8.1371 16 1.1726 1.3728 1.6047 18730 2.1829 25404 2.9522 3.4259 3.9703 45950 6.1304 9.3576 17 1.1843 1.4002 1.6528 1.9479 2.2920 2.6928 3.1588 3.7000 4.3276 5.0545 68660 10.7613 18 1.1961 1.4282 1.7024 2.0258 2.4066 2.8543 3.3799 3.9964.7171 5.5599 7.6900 12.3755 19 1.2081 1.4568 1.7535 2.1068 2.5270 3.0256 3.6165 4.3157 5.1417 6.1159 8.6128 14.2318 20 1.2202 1.4859 1.8061 2.1911 2.6533 3.2071 3.8697 4.6610 5.6044 6.7275 9.6463 16.3665 25 1.2824 1.6406 2.0938 2.6658 3.3864 4.2919 5.4274 68485 8.6231 10.8347 7.0001 329190 30 13478 18114 2.4273 3.2434 4.3219 57435 7.6123 10.0627 13.2677 7.444 29.9599 66.2118 35 1.4166 1.9999 2.8139 3.9461 5.5160 7.6861 10.6766 14.7853 20.4140 28.1024 52.7996 133.1755 40 1.4889 2.2080 3.2620 48010 7.0400 10.2857 14.9745 21.7245 31.4094 45.2593 93.0510 267.8635 ' Used to comp te the future value of a known present an ount. For example: what is the accumulated value of 3,00 invested today at 8% compounded quarery for 5 years? Using the factors ofn = 3) and i 2%20 quarterly periods and a quarterly interest rate of 2%), the factor is 1.4859. The accumulated value is S4 457.70 (S3000 1.4899). TABLE B.3 Present Value of an Annuity of 1 2% 10% 12% 15% 0.9901 0.9804 0.9709 09615 0.9524 09434 0.9346 0.9259 0.9174 0.9091 08929 08696 9704 19416 19135 18861 18594 1.8334 1.8080 17833 1.7591 1.7355 16901 1.6257 2.9410 2.8839 2.8286 2.7751 2.7232 26730 2.6243 25771 25313 2.4869 2.4018 2.2832 3.9020 3.8077 3.717 3.6299 3.5460 34651 3.3872 3.3121 3.2397 3.1699 30373 2.8550 4.8534 4.71354.57974.4518 4.3295 4.2124 4.1002 3.9927 3.8897 3.7908 3.6048 3.3522 5.7955 5.6014 5.4172 5.242 5.0757 4.9173 4.7665 4.6229 4.4859 4.3553 4.1114 3.7845 6.7282 6.4720 6.2303 6.0021 5.7864 5.5824 5.3893 5.2064 5.0330 48684 4.5638 4.1604 7.6517 7.3255 7.0197 6.7327 6.4632 62098 59713 5.7466 5.5348 5.3349 49676 4.4873 8.5660 8.1622 7.7861 7.4353 7.1078 6.8017 6.5152 6.2469 5.9952 5.7590 5.3282 4.7716 10 9.4713 89826 8.5302 8.1109 7.7217 7.3601 7.0236 67101 6.4177 6.1446 5.6502 50188 0.3676 9.7868 9.2526 8.7605 8.3064 7.8869 7.4987 7.1390 6.8052 6.4951 5.9377 5.2337 12551 10.57539.95409.385 8.8633 8.3838 7.9427 7.5361 7.1607 6.8137 6.1944 5.4206 2.1337 13484 10.6350 9.9856 9.3936 8.8527 8.3577 7.9038 7.4869 7.1034 6.4235 5.5831 14 13.0037 12.1062 11.2961 10.5631 9.8986 9.2950 8.7455 8.2442 7.7862 7.3667 6.6282 5.7245 15 13.8651 12.8493 11.9379 11.118410.37979.7122 9.1079 8.5595 8.0607 7.6061 6.8109 5.8474 14.7179 13.577712.5611 11.6523 10.8378 10.1059 9.4466 88514 8.3126 78237 6.9740 5.9542 5.5623 14.2919 13.1661 12.1657 11.2741 10.4773 9.7632 9.1216 8.5436 8.0216 7.1196 6.0472 18 16.3983 14.9920 13.7535 12.6593 11.6896 10.8276 10.0591 9.3719 8.7556 8.2014 7.2497 6.1280 19 17.2260 15.6785 14.3238 13.1339 12.0853 1.1581 10.3356 9.6036 8.9501 8.3649 7.3658 6.1982 20 18.0456 16.3514 14.8775 13.5903 12.4622 11.4699 10.5940 9.8181 9.1285 8.5136 7.4694 6.2593 25 22.0232 19.5235 17.4131 15.6221 14.0939 12.7834 11.6536 106748 98226 9.0770 7.8431 6.4641 30 25.8077 22.3965 19.6004 17.2920 15.3725 13.7648 12.4090 11.2578 10.2737 9.4269 8.0552 6.5660 29.4086 24.9986 21.4872 18.6646 16.3742 14.4982 12.9477 11.6546 10.5668 9.6442 8.1755 6.6166 2.8347 27.3555 23.1148 19.7928 17.1591 15.0463 13.3317 119246 10.7574 9.7791 8.2438 6.6418 Used to cakculate the present value of a series of equal payments made at the end of each period. For ex ample: What is the present valae of $2,000 per year for 10 years assuming an annual interest rate of9%. For (": io,9S), the PV factor is 64177. S2000 per year for 10 years is te equivalent of S12.835 tolay (S2000 x 64177. TABLE B.4 Future Value of an Annuity of 1 Periods 1% 3% 4% 6% 10% 15% 11.0000 1.0000 1.0000 .0000 1.0000 10000 00 0000 10000 10000 1.0000 .0000 2.0100 2.0200 20300 2.0400 2.0500 20600 2.0700 20800 2.0900 21000 2.1200 21500 3 3.0301 3.0604 3.0909 3.1216 3.1525 3.1836 3.2149 3.2464 3.278 3.3100 3.3744 3.4725 4 4.0604 4.1216 4.1836 4.2465 430 43746 4.4399 45061 4573 46410 4.779 4.9934 5. 1010 5.2040 5.3091 5.4163 5.5256 5.6371 5.7507 5.8666 5.9847 6.1051 6.3528 6.7424 6.1520 6.3081 6.4684 6.6330 6.8019 6.9753 7.1533 7.3359 7.5233 7.7156 8.1152 8.7537 7.2135 7.4343 7.6625 7.8983 8.1420 8.3938 8.6540 8.9228 9.2004 9.4872 10.0890 10668 8.2857 8.5830 8.8923 9.2142 9.5491 9.8975 10.2598 10.6366 11.0285 11.4359 12.2997 13.7268 9 9.3685 9.7546 10.1591 10.5828 11.0266 11.4913 11.9780 12.4876 13.0210 13.5795 14.7757 16.7858 0 10.4622 10.9497 114639 12.0061 12.5779 131808 13.8164 14.4866 5.1929 5.9374 7.5487 20.3037 11 115668 12.1687 12.8078 13.4864 14.2068 14.9716 15.7836 16.6455 17.5603 18.5312 20.6546 24.3493 12 12.6825 13.4121 14.1920 15.0258 159171 16.8699 178885 8.9771 20.1407 21.3843 24.133 29.0017 13 13.8093 14.6803 15.6178 16.6268 17.7130 18.8821 20.1406 21.4953 22.9534 24.5227 28.0291 34.3519 14 14.9474 15.9739 17.0863 18.2919 19.5986 21.0151 22.5505 24.2149 26.0192 27.9750 32.3926 40.5047 5 16.0969 17.2934 18.5989 20.0236 21.5786 23.2760 25.1290 27.1521 29.3609 31.7725 37.2797 47.5804 16 17.2579 18.6393 20.1569 21.8245 236575 256725 27.8881 30.3243 33.0034 35.9497 42.7533 55.7175 17 18.4304 20.0121 21.7616 23.6975 25.8404 28.2129 30.8402 33.7502 36.9737 40.5447 48.8837 65.0751 18 19.6147 21.4123 23.4144 25.6454 28.1324 30.9057 33.9990 37.4502 41.3013 45.5992 55.7497 75.8364 19 20.8109 22.8406 25.1169 27.6712 30.5390 33.7600 37.3790 41.4463 46.0185 51.1591 63.4397 88.2118 20 22.0190 24.2974 26.8704 29.7781 33.0660 36.7856 40.9955 45.7620 51.1601 57.2750 72.0524 102.4436 25 28.2432 32.0303 36.4593 41.64597 54.8645 63.240 73.1059 84009 98.3471 133.3339 212.7930 30 34.7849 40.5681 47.575456.0849 66.4388 79.0582 94.4608 113.2832 136.3075 164.4940 241.3327 434.7451 5 41.6603 49.9945 60.4621 73.6522 90.3203 111.4348 138.2369 172 3168 215.7108 271.0244 431.6635 881.1702 40 48.8864 604020 75.4013 95.0255 120.7998 154.7620 199.6351 259.0565 337.8824 442.5926 7670914 1,779.0903 Used to calculale the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4,000 per year for 6 years assuming an annual interest rate of 8%,For(n=6,i=8%),the FV tctor is 7.3359. S4100 per year for 6 years accumulates to $29.34MO CSAXDx7.3399