Question
River Station Length Weight Mercury 1 1 47 1616 1.6 1 1 48.7 1862 1.5 1 1 55.7 2855 1.7 1 1 45.2 1199 0.73
River Station Length Weight Mercury 1 1 47 1616 1.6 1 1 48.7 1862 1.5 1 1 55.7 2855 1.7 1 1 45.2 1199 0.73 1 1 43.8 1225 0.51 1 1 38.5 870 0.48 1 1 45.8 1455 0.95 1 1 44 1220 1.4 1 2 47.7 3378 0.8 1 2 45.1 2920 0.34 1 2 43.5 2674 0.54 1 2 41 1904 0.9 1 2 33.7 1080 0.48 1 2 33.5 1146 0.57 1 2 32 894 0.61 1 2 29.5 754 0.38 1 2 34.9 1174 0.61 1 2 47.1 1435 1.5 1 2 44.2 1378 0.72 1 2 41 1059 1.8 1 2 41.6 873 1.6 1 2 39 857 0.98 1 2 38 743 0.88 1 2 36.1 622 1.5 1 2 33.4 503 0.73 1 3 32.8 406 1.2 1 3 31.4 362 1.1 1 3 33.6 360 1.6 1 3 29.5 313 0.87 1 3 30.5 314 0.9 1 3 30 336 0.61 1 3 33.5 448 0.99 1 3 31 263 0.2 1 3 65 4511 2.1 1 4 36 600 1.5 1 4 44 1132 0.2 1 4 40 898 1.2 1 4 44.5 1301 1.6 1 4 50.5 2021 1.2 1 4 50 1883 1.2 1 4 47 1546 1.2 1 5 26 234 0.28 1 5 30 323 0.51 1 5 30 430 0.27 1 5 29 353 0.35 1 5 31 402 0.57 1 5 41 1042 0.66 1 5 36.5 723 0.49 1 5 38 709 0.51 1 5 44 1455 0.73 1 5 39 879 1.4 1 5 48 1396 2.7 1 5 51.5 2369 0.8
1 5 56 3421 3.1 1 6 30.5 400 0.5 1 6 34 678 0.55 1 6 44.5 1853 2.7 2 7 35 620 0.73 2 8 30.4 320 0.51 2 8 36 574 1.6 2 8 34.7 491 0.58 2 8 31.7 407 0.5 2 8 34.5 496 0.58 2 8 40.1 805 1.4 2 9 33 518 0.55 2 9 40.5 970 0.84 2 9 37 673 0.76 2 9 35.5 550 0.65 2 9 40 856 1.1 2 9 35 487 1 2 9 39.5 923 1.2 2 9 31.5 521 0.74 2 9 30 348 0.41 2 9 33 440 0.78 2 9 47 586 1.3 2 9 54 2664 1.8 2 11 34.8 491 0.57 2 11 34.5 560 0.69 2 11 38.5 870 1.8 2 11 40 864 0.93 2 11 46.4 1285 0.1 2 12 41.9 1188 2.4 2 12 46.2 1365 0.88 2 12 47.3 1632 1.5 2 12 47.1 1725 1.8 2 12 56.5 2451 2.1 2 12 46.1 1327 0.91 2 12 28.5 303 0.61 2 12 36.5 566 0.1 2 12 46 1342 2.2 2 12 36.7 647 2.4 2 12 39 844 0.69 2 12 53 3026 2.7 2 12 36.5 656 0.65 2 12 41.5 1018 0.83 2 12 36.2 708 1.3 2 13 27.3 250 0.28 2 13 26.7 252 0.21 2 13 27.5 283 0.14 2 13 33.9 465 0.39 2 13 29.6 329 0.9 2 13 57.5 2401 1.4 2 13 49 1891 0.58 2 13 34.9 498 0.42 2 13 29 307 0.11 2 13 31.5 376 0.28 2 12 38.2 573 0.591 5 56 3421 3.1 1 6 30.5 400 0.5 1 6 34 678 0.55 1 6 44.5 1853 2.7 2 7 35 620 0.73 2 8 30.4 320 0.51 2 8 36 574 1.6 2 8 34.7 491 0.58 2 8 31.7 407 0.5 2 8 34.5 496 0.58 2 8 40.1 805 1.4 2 9 33 518 0.55 2 9 40.5 970 0.84 2 9 37 673 0.76 2 9 35.5 550 0.65 2 9 40 856 1.1 2 9 35 487 1 2 9 39.5 923 1.2 2 9 31.5 521 0.74 2 9 30 348 0.41 2 9 33 440 0.78 2 9 47 586 1.3 2 9 54 2664 1.8 2 11 34.8 491 0.57 2 11 34.5 560 0.69 2 11 38.5 870 1.8 2 11 40 864 0.93 2 11 46.4 1285 0.1 2 12 41.9 1188 2.4 2 12 46.2 1365 0.88 2 12 47.3 1632 1.5 2 12 47.1 1725 1.8 2 12 56.5 2451 2.1 2 12 46.1 1327 0.91 2 12 28.5 303 0.61 2 12 36.5 566 0.1 2 12 46 1342 2.2 2 12 36.7 647 2.4 2 12 39 844 0.69 2 12 53 3026 2.7 2 12 36.5 656 0.65 2 12 41.5 1018 0.83 2 12 36.2 708 1.3 2 13 27.3 250 0.28 2 13 26.7 252 0.21 2 13 27.5 283 0.14 2 13 33.9 465 0.39 2 13 29.6 329 0.9 2 13 57.5 2401 1.4 2 13 49 1891 0.58 2 13 34.9 498 0.42 2 13 29 307 0.11 2 13 31.5 376 0.28 2 12 38.2 573 0.59
2 14 28.6 338 1.1 2 14 36.8 714 1.6 2 14 43.4 1251 1.3 2 15 50.8 2131 1.8 2 15 46.8 1604 1.8 2 15 40.2 1090 1.2 2 15 58.7 3315 2.9 2 15 56.1 2629 3.4 2 15 48 1743 1.9 2 15 44.7 1454 2.4 2 15 43.6 1245 1.8 2 15 37.6 937 2.4 2 15 40 869 1.4 2 15 46.5 772 1.7 2 15 36 724 1.3 2 16 50.4 1744 0.93 2 16 59.2 3524 3.6 2 16 49.5 1924 2.3 2 16 47.5 1546 1.4 2 16 54.2 3164 2.1 2 16 41.7 1255 1.4 2 16 36 702 0.92
OK, now that we've done that by hand, let's see how to get JMP to do the number crunching for us (you'll still need to state your hypotheses and draw your conclusions). Back on the distribution window for mercury, go to the red arrow by Mercury and choose Test mean. . O O mercury: Distribution of Mercury ? Distributions Moreurv Display Options Histogram Options Normal Quantile Plot Outlier Box Plot Quantile Box Plot Stem and Leaf CDF Plot Test Mean Calculates a t-test for Test Std Dev the standard deviation Confidence Interval Prediction Interval Tolerance Interval Capability Analysis Continuous Fit Save Remove 50.0% median 0.93 25.0% quartile 0.59 10.0% 0.448 2.5% 0.242 In the window that pops up, you will need to enter the hypothesized mean, which in this case is 1. Test Mean Specify Hypothesized Mean Enter True Standard Deviation to do z-test rather than t test If you also want a nonparaD Question 2 1 pts There are 129 fish, so we have 128 degrees of freedom. The appropriate t value from the table is 1.979. From an earlier question you found that xbar and 5. Use these to construct your own 95% condence interval. Refer to your notes/book for the formula (provide the lower and upper bounds and round to two decimal places). Cl lower bound : 1.081 D Question 8 1 pts Do you reject the null hypothesis, or fail to reject? O Fail to reject O Reject The FDA action level for mercury is 1 ppm (part per million). Let's test the claim that the population mean mercury concentration is significantly greater than 1 ppm. Follow these six steps in the following questions: Which of the following is the correct null and alternative hypotheses? Note: u signifies the population mean mercury concentration. O HO: M > 1.12 and H1: M = 1.12 O HO: M = 1.12 and H1: M # 1.12 O HO: M > 1 and H1: M = 1 O HO: M = 1.12 and H1: M > 1.12 O HO: M = 1 and H1: M = 1 O HO: M = 1 and H1: M > 1D Question 6 1 pts Which of the following is the appropriate test statistic and corresponding sampling distribution? Test statistic A: Test statistic B: \fD You can also get JMP to compute the confidence interval for you. From the distribution window (if you don't still have the window with your histogram for mercury concentration, make it again), go to the red arrow next to the variable name Mercury and choose Confidence Interval from the drop-down menu, selecting 95%. O O mercury: Distribution... O . ..... A ? > > Graph Builder Bub Distributions h Weight Mercury Moreur 17 1616 1.6 Display Options 1862 1.5 Histogram Options 17 2855 1.7 Normal Quantile Plot 1199 0.73 Outlier Box Plot 1320 0.56 Quantile Box Plot 18 1225 0.51 Stem and Leaf 15 870 0.48 CDF Plot 8 1455 0.95 Test Mean Test Std Dev 1220 1.4 0.5 Confidence Interval D 0.90 0.8 Prediction Interval 0.95 Tolerance Interval 0.34 0.99 0.54 Capability Analysis Other... 0.69 Continuous Fit 1904 Save 0.9 1080 0.48 Remove 5 1146 0.57 inn2 0 41D Question 7 1 pts Compute your test statistic (note that all the information you need you already used above). Assume the level of signicance is 0.01. State the critical region of values for the test statistic. (If you don't have your book, you can nd the critical value in JMP by making a New Data Table, putting in one empty value, going to the Formula dialog box, going to the Probability submenu, and choosing t Quantile, and putting in the appropriate values for p (.99 since this is a onesided test) and for the degrees of freedom.) 0 Test stat = 3.27 Critical Region 0 Test stat = 3.27 Critical Region 0 Test stat = 1.58 Critical Region 0 Test stat = 2.01 Critical Region 0 Test stat = 2.01 Critical Region 0 Test stat = 3.27 Critical Region 0 Test stat = 3.27 Critical Region D Question 12 1 pts Interpret the meaning of this pvalue in the context of this problem. 0 The p-value is the probability of observing another such random sample of size 129 with test statistic greater than 2.01 O The p-value is the probability of observing another such random sample of size 100 with test statistic greater than 3.27. O The p-value is the probability of observing another such random sample of size 129 with test statistic greater than 1.13 under the null hypothesis. 0 The p-value is the probability of observing another such random sample of size 100 with test statistic greater than 2.01 under the null hypothesis. O The p-value is the probability of observing another such random sample of size 129 with test statistic greater than 2.01 under the null hypothesis. 0 The p-value is the probability of observing another such random sample of size 129 with test statistic greater than 2.01 or less than 2.01. L Part II. One-Sample Hypothesis Tests for Means The data file does not say whether or not these are simple random samples of fish near each station. We are going to treat these as random samples. Now consider estimating the population mean mercury concentration of fish in these rivers. Let's make a 95% confidence interval for the true population mean mercury concentration.Question 11 1 pts Just below the test statistic, JMP gives you p- values for possible hypotheses you could be testing. The first is for the two-sided alternative of u # 1. The second is for the alternative M > 1, and the last is for the alternative MStep by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started