Question
This project utilizes the Real Estate Base database. The purpose is twofold:-Build critical thinking skills needed to structure data analysis appropriately for effective decision
This project utilizes the “Real Estate – Base” database. The purpose is twofold:-Build critical thinking skills needed to structure data analysis appropriately for effective decision making.-Analyze available data practically and skillfully in order to build an explanatory regression model. The Real Estate - Base database includes the following variables for 101 homes (* NOTE: These variables are shown as qualitative variables within the database):
a.*Unit# (An assigned database key)
b. *Type(H = House, C = Condo/Apartment)
c.*Location(1 through 10 – voting district where located)
d. *U/S/R(Urban vs. Suburban vs. Rural location)
e. Price(The price the house ended up selling for in 2017)
f.Sq. Ft.(Heated/Cooled & Attached square footage)
g. Lot (Acres)(Acreage of property)
h. Garage(Number of attached covered and/or enclosed parking positions
)i.BRs(Number of qualified bedrooms)
j.Baths(Number of bathrooms – no tub or shower indicated as .5)
k.*Pool(No=No Access; HA=Shared Pool; AG=Above Ground; IG=In Ground)
l.Age(Age of home in rounded year at end of 2017)
1. Create the following charts in Excel using the charting tools and the indicated variables in “Real Estate - Base.xlsx”:
a.Create a new tab in the spreadsheet called “Scatterplots”. After creating each Scatterplot on the original tab, move it to the Scatterplot tab you created.
b. Create a Scatterplot using the variables Price and Sq. Ft.c.Create a Scatterplot using the variables Price and Lot (Acres).d. Create a Scatterplot using the variables Price and Garage.e. Create a Scatterplot using the variables Price and BRs.f.Create a Scatterplot using the variables Price and Baths.g.Create a Scatterplot using the variables Price and Age.
2. What sort of relationship do you see between these variables based on the scatterplots?a.Between Price and Sq. Ft. (Circle)?No relationship Weak Moderate Strongb. Between Price and Lot (Circle)?No relationship Weak Moderate Strongc.Between Price and Garage (Circle)?No relationship Weak Moderate Strongd. Between Price and BRs (Circle)?No relationship Weak Moderate Stronge. Between Price and Baths (Circle)?No relationship Weak Moderate Strongf.Between Price and Age (Circle)?No relationship Weak Moderate Strong
3. In the Excel spreadsheet provided, using the Data Analysis Add-in, run a regression analysis with Price as the Dependent Variable and Lot, Garage and BRs as the Independent Variables and select to have Excel create a new tab called “Regression Model”.
4. Provide the following from the “Excel Model”:
a. Coefficient of Determination (R-squared)___________________b. Y-Intercept for the Regression Model___________________c.Slope value for X1 (Lot)___________________d. Slope value for X2 (Garage)___________________e. Slope value for X3 (BRs)___________________ Phase 2 of the Project (Critical Thinking and SAS® Model)
5. Do you think we need all three current Independent variables in our Regression model to predict changes in Price (Circle)? Yes No Explain: _______________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6. Which variable(s) would you remove (Circle)?Lot SizeGarage BRs
7. Of the following variables in the spreadsheet, which variable would you select next to add to the model (i.e., you think it would create a stronger prediction of Price)?Type Location U/S/R Sq. Ft. Baths Pool Age
8. Run a SAS Regression Model on the Real Estate – Base database using Price as the Dependent Variable (Y) and include the original Independent Variables (minus any you removed in step 6) and adding the variable you chose in step 7. Print your model output
9. Provide the following from the SAS Model:a.Coefficient of Determination (R-squared).________________________b. Y-Intercept for the Regression Model________________________c.Slope value for each of your Independent Variables.________________________
10. Did your SAS model provide a stronger Coefficient of Determination (Circle)? Yes No Critical Thinking Question:
11. A large real estate company is trying to use similar data plus their own sales data to forecast total sales for the coming year for each of their agents and they have pulled data from their Finance records. They are trying to assemble the best data to build a Regression model. a.Would it make sense to use the same data as we used above in the SAS model? Why or why not?____________________________________________________________________________________________________________________________________________________________________b. Recommend three data elements you think they probably have available to help them predict sales for each of their sales people.1. ______________________________________________2. ______________________________________________3. ____________________________________________
Unit # | Type | Location | U/S/R | Sq. Ft. | Lot (Acres) | Garage | BRs | Baths | Pool | Age | Price | ||
1 | H | 10 | R | 1100 | 2 | 0 | 2 | 1 | No | 27 | $ 54,000 | ||
2 | H | 2 | U | 1875 | 0.25 | 1 | 3 | 2 | No | 26 | $ 98,000 | ||
3 | H | 5 | S | 1350 | 0.25 | 0 | 2 | 1.5 | AG | 82 | $ 125,700 | ||
4 | H | 6 | S | 2612 | 0.5 | 2 | 3 | 2 | No | 11 | $ 250,000 | ||
5 | H | 9 | S | 2190 | 0.5 | 1 | 3 | 2 | No | 17 | $ 411,500 | ||
6 | H | 1 | U | 1800 | 0.25 | 0 | 3 | 1 | No | 21 | $ 56,500 | ||
7 | H | 3 | S | 1605 | 0.25 | 2 | 3 | 2 | HA | 6 | $ 289,500 | ||
8 | H | 7 | R | 2199 | 12 | 2 | 3 | 2.5 | No | 72 | $ 420,000 | ||
9 | H | 4 | S | 2120 | 0.4 | 2 | 3 | 2 | No | 15 | $ 199,800 | ||
10 | C | 8 | U | 900 | 0 | 0 | 2 | 2 | HA | 4 | $ 249,900 | ||
11 | H | 10 | R | 1950 | 1 | 1 | 2 | 2 | No | 12 | $ 77,000 | ||
12 | H | 2 | U | 1420 | 0.5 | 0 | 2 | 2 | No | 16 | $ 78,600 | ||
13 | H | 5 | S | 2090 | 0.75 | 2 | 3 | 2 | IG | 22 | $ 199,800 | ||
14 | H | 6 | S | 2770 | 0.5 | 2 | 3 | 2.5 | HA | 9 | $ 279,500 | ||
15 | H | 9 | S | 3650 | 1 | 3 | 5 | 5 | HA | 4 | $ 842,000 | ||
16 | H | 1 | U | 1600 | 0.25 | 1 | 3 | 1.5 | No | 28 | $ 66,720 | ||
17 | H | 3 | S | 2288 | 0.5 | 2 | 3 | 2 | No | 11 | $ 311,450 | ||
18 | H | 7 | R | 2000 | 1.5 | 2 | 3 | 2 | IG | 21 | $ 311,520 | ||
19 | H | 4 | S | 1880 | 0.25 | 1 | 3 | 2 | IG | 9 | $ 187,500 | ||
20 | C | 8 | U | 980 | 0 | 1 | 2 | 1.5 | HA | 5 | $ 311,750 | ||
21 | H | 10 | R | 3011 | 3 | 1 | 4 | 2 | AG | 35 | $ 98,000 | ||
22 | H | 2 | U | 2980 | 0.4 | 2 | 3 | 2 | No | 4 | $ 112,000 | ||
23 | H | 5 | S | 1850 | 0.25 | 0 | 3 | 2 | No | 11 | $ 146,850 | ||
24 | H | 6 | S | 3520 | 0.5 | 3 | 4 | 2.5 | IG | 3 | $ 301,500 | ||
25 | H | 9 | S | 3300 | 0.75 | 3 | 4 | 3.5 | HA | 9 | $ 690,000 | ||
26 | H | 1 | U | 1905 | 0.5 | 1 | 3 | 1.5 | AG | 37 | $ 71,200 | ||
27 | H | 3 | S | 2850 | 0.25 | 2 | 3 | 2 | No | 5 | $ 275,000 | ||
28 | H | 7 | R | 3250 | 10 | 3 | 4 | 2 | No | 2 | $ 598,230 | ||
29 | H | 4 | S | 1900 | 0.4 | 2 | 3 | 2 | No | 3 | $ 176,500 | ||
30 | C | 8 | U | 1150 | 0 | 1 | 3 | 2.5 | HA | 0 | $ 405,200 | ||
31 | H | 10 | R | 2015 | 1.5 | 1 | 3 | 1.5 | No | 38 | $ 68,521 | ||
32 | H | 2 | U | 2190 | 0.66 | 1 | 3 | 2.5 | IG | 16 | $ 101,500 | ||
33 | H | 5 | S | 1750 | 0.66 | 1 | 3 | 1.5 | No | 22 | $ 117,650 | ||
34 | H | 6 | S | 2190 | 1 | 2 | 3 | 2.5 | HA | 8 | $ 266,000 | ||
35 | H | 9 | S | 3450 | 0.75 | 2 | 3 | 3 | IG | 6 | $ 601,500 | ||
36 | H | 1 | U | 1064 | 0.5 | 0 | 2 | 1.5 | No | 31 | $ 39,800 | ||
37 | H | 3 | S | 2540 | 0.75 | 2 | 4 | 2.5 | No | 9 | $ 401,500 | ||
38 | H | 7 | R | 4200 | 5 | 3 | 5 | 2.5 | No | 4 | $ 782,000 | ||
39 | H | 4 | S | 1980 | 0.66 | 2 | 3 | 2 | HA | 8 | $ 201,500 | ||
40 | C | 8 | U | 850 | 0 | 0 | 2 | 2 | HA | 6 | $ 199,650 | ||
41 | H | 10 | R | 1865 | 14 | 1 | 3 | 2 | No | 17 | $ 119,500 | ||
42 | H | 2 | U | 1750 | 0.75 | 1 | 3 | 2 | AG | 21 | $ 88,420 | ||
43 | H | 5 | S | 1700 | 0.5 | 2 | 3 | 2 | No | 15 | $ 188,500 | ||
44 | H | 6 | S | 2045 | 0.5 | 1 | 3 | 2 | No | 8 | $ 231,100 | ||
45 | H | 9 | S | 2700 | 0.5 | 2 | 3 | 2.5 | No | 15 | $ 485,200 | ||
46 | H | 1 | U | 1550 | 0.75 | 1 | 3 | 2 | No | 29 | $ 48,999 | ||
47 | H | 3 | S | 2390 | 0.5 | 2 | 4 | 2 | No | 13 | $ 366,500 | ||
48 | H | 7 | R | 2050 | 9 | 2 | 3 | 2 | No | 17 | $ 356,420 | ||
49 | H | 4 | S | 1830 | 0.25 | 1 | 2 | 2 | No | 8 | $ 157,650 | ||
50 | C | 8 | U | 1014 | 0 | 1 | 2 | 2 | HA | 2 | $ 288,500 | ||
51 | H | 10 | R | 1450 | 0.5 | 0 | 2 | 1 | No | 36 | $ 49,874 | ||
52 | H | 2 | U | 1800 | 0.5 | 2 | 3 | 2.5 | No | 9 | $ 91,640 | ||
53 | H | 5 | S | 2015 | 0.75 | 1 | 3 | 2 | No | 12 | $ 179,500 | ||
54 | H | 6 | S | 1950 | 0.5 | 2 | 3 | 2.5 | No | 4 | $ 189,500 | ||
55 | H | 9 | S | 2888 | 0.5 | 2 | 4 | 2.5 | No | 4 | $ 532,800 | ||
56 | H | 1 | U | 2012 | 0.4 | 1 | 3 | 2 | No | 16 | $ 52,100 | ||
57 | H | 3 | S | 2450 | 0.5 | 2 | 3 | 2.5 | No | 7 | $ 399,500 | ||
58 | H | 7 | R | 3450 | 4 | 2 | 3 | 2.5 | No | 37 | $ 388,600 | ||
59 | H | 4 | S | 2200 | 0.4 | 2 | 3 | 2.5 | No | 2 | $ 175,800 | ||
60 | C | 8 | U | 1050 | 0 | 1 | 2 | 2 | HA | 1 | $ 301,500 | ||
61 | H | 10 | R | 2220 | 8 | 2 | 3 | 2 | IG | 21 | $ 95,400 | ||
62 | H | 2 | U | 1995 | 0.5 | 1 | 2 | 1.5 | No | 15 | $ 96,888 | ||
63 | H | 5 | S | 2100 | 1 | 2 | 3 | 2 | No | 36 | $ 171,630 | ||
64 | H | 6 | S | 2750 | 0.75 | 2 | 3 | 2 | IG | 7 | $ 207,500 | ||
65 | H | 9 | S | 3120 | 0.75 | 2 | 4 | 3 | HA | 2 | $ 577,900 | ||
66 | H | 1 | U | 1011 | 0.25 | 0 | 2 | 2 | No | 14 | $ 49,875 | ||
67 | H | 3 | S | 2120 | 0.5 | 2 | 2 | 2 | HA | 6 | $ 247,800 | ||
68 | H | 7 | R | 3890 | 22 | 3 | 4 | 3.5 | IG | 3 | $ 497,500 | ||
69 | H | 4 | S | 2100 | 0.66 | 2 | 4 | 2.5 | HA | 4 | $ 205,000 | ||
70 | C | 8 | U | 1250 | 0 | 2 | 3 | 2.5 | HA | 0 | $ 469,800 | ||
71 | H | 10 | R | 1090 | 2.5 | 0 | 3 | 1 | AG | 35 | $ 77,000 | ||
72 | H | 2 | U | 1900 | 0.4 | 1 | 2 | 2 | No | 4 | $ 91,400 | ||
73 | H | 5 | S | 1040 | 0.25 | 1 | 2 | 2 | IG | 3 | $ 152,800 | ||
74 | H | 6 | S | 3850 | 1 | 2 | 4 | 3 | HA | 7 | $ 401,500 | ||
75 | H | 9 | S | 2950 | 0.5 | 2 | 3 | 3 | IG | 1 | $ 505,000 | ||
76 | H | 1 | U | 1000 | 0.4 | 1 | 2 | 2 | AG | 25 | $ 58,700 | ||
77 | H | 3 | S | 2850 | 0.5 | 1 | 3 | 2.5 | IG | 2 | $ 285,235 | ||
78 | H | 7 | R | 2740 | 75 | 2 | 3 | 2 | IG | 15 | $ 675,500 | ||
79 | H | 4 | S | 1850 | 0.25 | 1 | 2 | 2 | No | 4 | $ 188,760 | ||
80 | C | 8 | U | 900 | 0 | 1 | 2 | 2 | HA | 1 | $ 302,900 | ||
81 | H | 10 | R | 2950 | 11 | 2 | 3 | 2 | AG | 5 | $ 171,680 | ||
82 | H | 2 | U | 1640 | 0.75 | 1 | 2 | 2 | No | 7 | $ 84,600 | ||
83 | H | 5 | S | 1800 | 0.8 | 2 | 3 | 2 | No | 2 | $ 166,900 | ||
84 | H | 6 | S | 3200 | 0.75 | 3 | 4 | 2.5 | HA | 7 | $ 366,900 | ||
85 | H | 9 | S | 2400 | 0.5 | 2 | 3 | 2 | No | 9 | $ 411,960 | ||
86 | H | 1 | U | 2200 | 0.5 | 2 | 3 | 2 | No | 17 | $ 68,900 | ||
87 | H | 3 | S | 3300 | 0.5 | 2 | 4 | 2.5 | HA | 8 | $ 297,600 | ||
88 | H | 7 | R | 4350 | 11 | 2 | 4 | 3 | No | 3 | $ 524,700 | ||
89 | H | 4 | S | 1800 | 0.4 | 2 | 3 | 2 | No | 12 | $ 181,500 | ||
90 | C | 8 | U | 940 | 0 | 1 | 2 | 2 | HA | 7 | $ 312,800 | ||
91 | H | 10 | R | 1750 | 4 | 1 | 2 | 2 | No | 37 | $ 88,520 | ||
92 | H | 2 | U | 1490 | 0.5 | 0 | 3 | 1.5 | No | 32 | $ 79,450 | ||
93 | H | 5 | S | 1500 | 0.5 | 1 | 3 | 2 | No | 17 | $ 151,960 | ||
94 | H | 6 | S | 2175 | 1 | 2 | 3 | 2 | No | 11 | $ 302,900 | ||
95 | H | 9 | S | 2550 | 0.5 | 2 | 3 | 2.5 | No | 11 | $ 489,650 | ||
96 | H | 1 | U | 850 | 0.25 | 0 | 2 | 1.5 | No | 12 | $ 64,995 | ||
97 | H | 3 | S | 2752 | 1 | 2 | 3 | 2.5 | HA | 6 | $ 400,500 | ||
98 | H | 7 | R | 4540 | 18 | 2 | 5 | 3 | No | 14 | $ 711,000 | ||
99 | H | 4 | S | 1590 | 0.5 | 1 | 2 | 2 | IG | 9 | $ 172,450 | ||
100 | C | 8 | U | 980 | 0 | 1 | 3 | 2 | HA | 2 | $ 345,900 | ||
101 | H | 10 | R | 1275 | 2 | 1 | 2 | 1.5 | No | 24 | $ 81,400 |
Step by Step Solution
3.56 Rating (153 Votes )
There are 3 Steps involved in it
Step: 1
90000000 80000000 70000000 60000000 50000000 400000...Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Document Format ( 2 attachments)
635dfe16d24c2_180567.pdf
180 KBs PDF File
635dfe16d24c2_180567.docx
120 KBs Word File
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started