Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

solve the following attachments. 18.4 Theorem. Let f be a continuous strictly increasing function on some interval 1. Then f(1) is an interval J by

solve the following attachments.

image text in transcribedimage text in transcribedimage text in transcribed
18.4 Theorem. Let f be a continuous strictly increasing function on some interval 1. Then f(1) is an interval J by Corollary 18.3 and f-1 represents a function with domain J. The function f-1 is a continuous strictly increasing function on J. Proof The function fis easily shown to be strictly increasing. Since f maps J onto I, the next theorem shows f-1 is continuous. 18.5 Theorem. Let g be a strictly increasing function on an interval J such that g(J) is an interval I. Then g is continuous on J. Proof Consider co in J. We assume To is not an endpoint of J; tiny changes in the proof are needed otherwise. Then g(x0) is not an endpoint of I, so there exists co > 0 such that (g(To) - co, g(x0) + co) CI. Let 0. Since we only need to verify the e-o property of The orem 17.2 for small e, we may assume e

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Commercial Fishing On The Outer Banks

Authors: R Wayne Gray, Nancy Beach Gray

1st Edition

1439667055, 9781439667057

More Books

Students also viewed these Economics questions

Question

4. Is crime caused by mental illness?

Answered: 1 week ago

Question

A greater tendency to create winwin situations.

Answered: 1 week ago