Question
Step 1 (a) What is the probability that more than 180 will take your free sample? We are asked to find the probability that more
Step 1
(a) What is the probability that more than 180 will take your free sample?
We are asked to find the probability that more than 180 people of the317that walk by will take a free sample in a supermarket. We are told that about57%of all customers take free samples. First we must test to see if we can use the normal approximation to the binomial distribution. Here we will define success as "someone takes a free sample." In this scenario, the number of trials is
n=317
317
.
The probability of success is
p=0.57
0.57
,
which means that the probability of a failure,q, is
q= 1p=0.43
0.43
.
Since
np=180.69
180.69
andnq=136.31, wecan
can
use the normal approximation to the binomial distribution because these values are both greater than 5.
Step 2
We wish to find the probability that more than 180 take samples, so
P(r> 180).
Because the normal approximation to the binomial will be used, the original probability statement
P(r> 180)
must be rewritten using the continuity correction. The continuity correction to the normal approximation is the process of converting the discrete random variabler(number of successes) to the continuous normal random variablexby doing the following.Ifris aleft pointof an interval, subtract 0.5 to obtain the corresponding normal variablex; that is,
x=r0.5.
Ifris aright pointof an interval, add 0.5 to obtain the corresponding normal variablex; that is,
x=r+ 0.5.
We know that
P(r> 180)
can be rewritten as
P(r181).
Applying the continuity correction, the desired probability statement becomes
P
x180.5
180.5
.
Step 3
We must now convert
P(x180.5)
to standard units. To convert to standard units, we need the values ofandrounded to four decimal places.
= | np | |||
= | 180.69 | |||
= |
| |||
= | 12.9967 |
Now use the formula
z=
x |
to find the value ofzrounded to two decimal places that corresponds to
x= 180.5.
z=
The probability is found as follows. Recall for areas to the right of a specifiedzvalue, we must subtract thetableentry from 1. (Round your answers to four decimal places.)
P(x180.5) | = | P z | ||
= | 1P z | |||
= | 1 | |||
= |
Therefore, the probability that more than 180 people will take a free sample is .
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started