Answered step by step
Verified Expert Solution
Link Copied!
Question
1 Approved Answer

Stocks A and B have the following probability distributions of expected future returns: Probability A B 0.1 (11 %) (36 %) 0.1 6 0 0.6

Stocks A and B have the following probability distributions of expected future returns:

Probability A B
0.1 (11 %) (36 %)
0.1 6 0
0.6 13 18
0.1 21 27
0.1 38 44

A. Calculate the expected rate of return, , for Stock B ( = 13.20%.) Do not round intermediate calculations. Round your answer to two decimal places.

%

  1. Calculate the standard deviation of expected returns, A, for Stock A (B = 19.65%.) Do not round intermediate calculations. Round your answer to two decimal places.

    %

    Now calculate the coefficient of variation for Stock B. Do not round intermediate calculations. Round your answer to two decimal places.

    Is it possible that most investors might regard Stock B as being less risky than Stock A?

    -Select-IIIIIIIVVItem 4

    1. If Stock B is more highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
    2. If Stock B is more highly correlated with the market than A, then it might have the same beta as Stock A, and hence be just as risky in a portfolio sense.
    3. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
    4. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
    5. If Stock B is more highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be less risky in a portfolio sense.
  2. Assume the risk-free rate is 3.5%. What are the Sharpe ratios for Stocks A and B? Do not round intermediate calculations. Round your answers to four decimal places.

    Stock A:

    Stock B:

    Are these calculations consistent with the information obtained from the coefficient of variation calculations in Part b?

    1. In a stand-alone risk sense A is more risky than B. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
    2. In a stand-alone risk sense A is less risky than B. If Stock B is more highly correlated with the market than A, then it might have the same beta as Stock A, and hence be just as risky in a portfolio sense.
    3. In a stand-alone risk sense A is less risky than B. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
    4. In a stand-alone risk sense A is less risky than B. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
    5. In a stand-alone risk sense A is more risky than B. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image
Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Healthcare Finance An Introduction To Accounting And Financial Management

Authors: Louis C. Gapenski

4th Edition

1567932800, 978-1567932805

More Books

Students explore these related Finance questions