Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Suppose a certain real-valued function f is continuous on the interval [23, 36] and differentiable on (23, 36). Moreover, suppose we also know x} 5
Suppose a certain real-valued function f is continuous on the interval [23, 36] and differentiable on (23, 36). Moreover, suppose we also know x} 5 76, for all a: e (23, 36), and an) = 7. {a) We wish to find an explicit upper bound for f(36). Complete the following proof: Proof. First. since f is continuous on the interval .. :: -. o - and differentiable on l'Ji::'v. :3: ~ 1136) n30) W = fl")- Ftearranging this and applying our assumptions on f, we conclude that me) = an) + 6 f'(c) 5 7 + 6 x 76 = 463. then, by -. -':.- l.-..-,; . This completes the proof. (b) Using a similar argument, prove that f(23) 2 525 in the essay box betow. Egym There is no need to use correct Maple syntax or use the equation editor in the essay box below. as long as you response is clear enough for a reader. For example, - rs) may be written as 'f(x}', f"' (c) may be written as 'f'{c}', g and 2 may be written as '4:' and '>=', respectively. a + b c + d The intervals [0, l] and (2, 3) may be written as '[0,1]' and '{2.3}', respectively. may be written as '(a+b}r'{c+d)'. f E Q 253:3" a- I 1; B_I u -5 x. xi Words: I] A
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started