Question
Suppose we have two goods, whose quantities are denoted by A and B, each being a real number. A consumers consumption set consists of all
Suppose we have two goods, whose quantities are denoted by A and B, each being a real number. A consumer’s consumption set consists of all (A; B) such that A ≥ 0 and B > 4.
His utility function is: U (A, B) = ln(A + 5) + ln(B - 4). The price of A is p and that of B is q; total income is I. You have to find the consumer’s demand functions and examine their properties. You need not worry about second-order conditions for now.
(i) Solve the problem by Lagrange’s method, ignoring the constraints A ≥ 0, B > 4. Show that the solutions for A and B that you obtain are valid demand functions if and only if I ≥ 5p + 4q.
(ii) Suppose I ≥ 5p + 4q. Solve the utility maximization problem subject to the budget constraint and an additional constraint A ≥ 0, using Kuhn-Tucker theory (Bear in mind that the Kuhn-Tucker conditions coincide with the ordinary first-order Lagrangian conditions). Show that the solutions for A and B you get here are valid demand functions if and only if 4q < I ≤ 5p + 4q. What happens if I ≤ 4q?
In each of the following parts, consider the above cases (i) and (ii) separately.
(iii) Find the algebraic expressions for the income elasticities of demand for A; B. Which, if either, of the goods is a luxury?
(iv) Find the marginal tendencies to spend on the two goods. Which, if either, of the goods is inferior?
(v) Find the algebraic expressions for the own price derivatives ????A/????p, ????B/????q. Which, if either, of the goods is a Giffen good?
Step by Step Solution
3.40 Rating (156 Votes )
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started