TABLE 6.2 Present Value of 1 (Present Value of a Single Sum) PVF=1+i)n TABLE 6.3 Future Value of an Ordinary Annuity of 1 \begin{tabular}{|c|c|c|c|c|c|c|} \hline 8% & 9% & 10% & 11% & 12% & 15% & \begin{tabular}{c} (n) \\ Periods \end{tabular} \\ \hline 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1 \\ \hline 2.08000 & 2.09000 & 2.10000 & 2.11000 & 2.12000 & 2.15000 & 2 \\ \hline 3.24640 & 3.27810 & 3.31000 & 3.34210 & 3.37440 & 3.47250 & 3 \\ \hline 4.50611 & 4.57313 & 4.64100 & 4.70973 & 4.77933 & 4.99338 & 4 \\ \hline 5.86660 & 5.98471 & 6.10510 & 6.22780 & 6.35285 & 6.74238 & 5 \\ \hline 7.33592 & 7.52334 & 7.71561 & 7.91286 & 8.11519 & 8.75374 & 6 \\ \hline 8.92280 & 9.20044 & 9.48717 & 9.78327 & 10.08901 & 11.06680 & 7 \\ \hline 10.63663 & 11.02847 & 11.43589 & 11.85943 & 12.29969 & 13.72682 & 8 \\ \hline 12.48756 & 13.02104 & 13.57948 & 14.16397 & 14.77566 & 16.78584 & 9 \\ \hline 14.48656 & 15.19293 & 15.93743 & 16.72201 & 17.54874 & 20.30372 & 10 \\ \hline 16.64549 & 17.56029 & 18.53117 & 19.56143 & 20.65458 & 24.34928 & 11 \\ \hline 18.97713 & 20.14072 & 21.38428 & 22.71319 & 24.13313 & 29.00167 & 12 \\ \hline 21.49530 & 22.95339 & 24.52271 & 26.21164 & 28.02911 & 34.35192 & 13 \\ \hline 24.21492 & 26.01919 & 27.97498 & 30.09492 & 32.39260 & 40.50471 & 14 \\ \hline 27.15211 & 29.36092 & 31.77248 & 34.40536 & 37.27972 & 47.58041 & 15 \\ \hline 30.32428 & 33.00340 & 35.94973 & 39.18995 & 42.75328 & 55.71747 & 16 \\ \hline 33.75023 & 36.97371 & 40.54470 & 44.50084 & 48.88367 & 65.07509 & 17 \\ \hline 37.45024 & 41.30134 & 45.59917 & 50.39593 & 55.74972 & 75.83636 & 18 \\ \hline 41.44626 & 46.01846 & 51.15909 & 56.93949 & 63.43968 & 88.21181 & 19 \\ \hline 45.76196 & 51.16012 & 57.27500 & 64.20283 & 72.05244 & 102.44358 & 20 \\ \hline 50.42292 & 56.76453 & 64.00250 & 72.26514 & 81.69874 & 118.81012 & 21 \\ \hline 55.45676 & 62.87334 & 71.40275 & 81.21431 & 92.50258 & 137.63164 & 22 \\ \hline 60.89330 & 69.53194 & 79.54302 & 91.14788 & 104.60289 & 159.27638 & 23 \\ \hline 66.76476 & 76.78981 & 88.49733 & 102.17415 & 118.15524 & 184.16784 & 24 \\ \hline 73.10594 & 84.70090 & 98.34706 & 114.41331 & 133.33387 & 212.79302 & 25 \\ \hline \end{tabular} TABLE 6.1 Future Value of 1 (Future Value of a Single Sum) EI/E11+iin 1n11 Click here to view factor tables. What amount must be on deposit at the end of 15 years to ensure that all benefits will be paid? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581 .) The amount must be on deposit \begin{tabular}{|c|c|c|c|c|c|c|} \hline 8% & 9% & 10% & 11% & 12% & 15% & \begin{tabular}{c} (n) \\ Periods \\ \end{tabular} \\ \hline .92593 & .91743 & .90909 & .90090 & .89286 & .86957 & 1 \\ \hline .85734 & .84168 & .82645 & .81162 & .79719 & .75614 & 2 \\ \hline .79383 & .77218 & .75132 & .73119 & .71178 & .65752 & 3 \\ \hline .73503 & .70843 & .68301 & .65873 & .63552 & .57175 & 4 \\ \hline .68058 & .64993 & .62092 & .59345 & .56743 & .49718 & 5 \\ \hline .63017 & .59627 & .56447 & .53464 & .50663 & .43233 & 6 \\ \hline .58349 & .54703 & .51316 & .48166 & .45235 & .37594 & 7 \\ \hline .54027 & .50187 & .46651 & .43393 & .40388 & .32690 & 8 \\ \hline .50025 & .46043 & .42410 & .39092 & .36061 & .28426 & 9 \\ \hline .46319 & .42241 & .38554 & .35218 & .32197 & .24719 & 10 \\ \hline .42888 & .38753 & .35049 & .31728 & .28748 & .21494 & 11 \\ \hline .39711 & .35554 & .31863 & .28584 & .25668 & .18691 & 12 \\ \hline .36770 & .32618 & .28966 & .25751 & .22917 & .16253 & 13 \\ \hline .34046 & .29925 & .26333 & .23199 & .20462 & .14133 & 14 \\ \hline .31524 & .27454 & .23939 & .20900 & .18270 & .12289 & 15 \\ \hline .29189 & .25187 & .21763 & .18829 & .16312 & .10687 & 16 \\ \hline .27027 & .23107 & .19785 & .16963 & .14564 & .09293 & 17 \\ \hline .25025 & .21199 & .17986 & .15282 & .13004 & .08081 & 18 \\ \hline .23171 & .19449 & .16351 & .13768 & .11611 & .07027 & 19 \\ \hline .21455 & .17843 & .14864 & .12403 & .10367 & .06110 & 20 \\ \hline .19866 & .16370 & .13513 & .11174 & .09256 & .05313 & 21 \\ \hline .18394 & .15018 & .12285 & .10067 & .08264 & .04620 & 22 \\ \hline .17032 & .13778 & .11168 & .09069 & .07379 & .04017 & 23 \\ \hline .15770 & .12641 & .10153 & .08170 & .06588 & .03493 & 24 \\ \hline .14602 & .11597 & .09230 & .07361 & .05882 & .03038 & 25 \\ \hline \end{tabular} You have been hired as a benefit consultant by Jean Honore, the owner of Ayayai Angels. She wants to establish a retirement plan for herself and her three employees. Jean has provided the following information. The retirement plan is to be based upon annual salary for the last year before retirement and is to provide 50% of Jean's last-year annual salary and 40% of the last-year annual salary for each employee. The plan will make annual payments at the beginning of each year for 20 years from the date of retirement. Jean wishes to fund the plan by making 15 annual deposits beginning January 1, 2025. Invested funds will earn 10% compounded annually, Information about plan participants as of January 1,2025 , is as follows. Jean Honore, owner: Current annual salary of \$48,300; estimated retirement date January 1, 2050. Colin Davis, flower arranger: Current annual salary of $38,320; estimated retirement date January 1, 2055. Anita Baker, sales clerk: Current annual salary of $19,270, estimated retirement date January 1, 2045. Gavin Bryars, part-time bookkeeper: Current annual salary of $15.610; estimated retirement date January 1.2040. In the past, Jean has given herself and each employee a year-end salary increase of 4%. Jean plans to continue this policy in the future. TABLE 6.1 Future Value of 1 TABLE 6.4 Present Value of an Ordinary Annuity of 1 1(1+i)n1 TABLE 6.3 Future Value of an Ordinary Annuity of 1 FVF=OAn,i=i(1+i)n1 TABLE 6.4 Present Value of an Ordinary Annuity of 1 \begin{tabular}{llllllr} (n) \\ 8% & 9% & 10% & 11% & 12% & 15% & Periods \\ \hline .92593 & .91743 & .90909 & .90090 & .89286 & .86957 & 1 \\ 1.78326 & 1.75911 & 1.73554 & 1.71252 & 1.69005 & 1.62571 & 2 \\ 2.57710 & 2.53130 & 2.48685 & 2.44371 & 2.40183 & 2.28323 & 3 \\ 3.31213 & 3.23972 & 3.16986 & 3.10245 & 3.03735 & 2.85498 & 4 \\ 3.99271 & 3.88965 & 3.79079 & 3.69590 & 3.60478 & 3.35216 & 5 \\ & & & & & & \\ 4.62288 & 4.48592 & 4.35526 & 4.23054 & 4.11141 & 3.78448 & 6 \\ 5.20637 & 5.03295 & 4.86842 & 4.71220 & 4.56376 & 4.16042 & 7 \\ 5.74664 & 5.53482 & 5.33493 & 5.14612 & 4.96764 & 4.48732 & 8 \\ 6.24689 & 5.99525 & 5.75902 & 5.53705 & 5.32825 & 4.77158 & 9 \\ 6.71008 & 6.41766 & 6.14457 & 5.88923 & 5.65022 & 5.01877 & 10 \\ 7.13896 & 6.80519 & 6.49506 & 6.20652 & 5.93770 & 5.23371 & 11 \\ 7.53608 & 7.16073 & 6.81369 & 6.49236 & 6.19437 & 5.42062 & 12 \\ 7.90378 & 7.48690 & 7.10336 & 6.74987 & 6.42355 & 5.58315 & 13 \\ 8.24424 & 7.78615 & 7.36669 & 6.98187 & 6.62817 & 5.72448 & 14 \\ 8.55948 & 8.06069 & 7.60608 & 7.19087 & 6.81086 & 5.84737 & 15 \\ 8.85137 & 8.31256 & 7.82371 & 7.37916 & 6.97399 & 5.95424 & 16 \\ 9.12164 & 8.54363 & 8.02155 & 7.54879 & 7.11963 & 6.04716 & 17 \\ 9.37189 & 8.75563 & 8.20141 & 7.70162 & 7.24967 & 6.12797 & 18 \\ 9.60360 & 8.95012 & 8.36492 & 7.83929 & 7.36578 & 6.19823 & 19 \\ 9.81815 & 9.12855 & 8.51356 & 7.96333 & 7.46944 & 6.25933 & 20 \\ 10.01680 & 9.29224 & 8.64869 & 8.07507 & 7.56200 & 6.31246 & 21 \\ 10.20074 & 9.44243 & 8.77154 & 8.17574 & 7.64465 & 6.35866 & 22 \\ 10.37106 & 9.58021 & 8.88322 & 8.26643 & 7.71843 & 6.39884 & 23 \\ 10.52876 & 9.70661 & 8.98474 & 8.34814 & 7.78432 & 6.43377 & 24 \\ 10.67478 & 9.82258 & 9.07704 & 8.42174 & 7.84314 & 6.46415 & 25 \end{tabular} \begin{tabular}{ccccccc} 8% & 9% & 10% & 11% & 12% & 15% & \begin{tabular}{c} (n) \\ 8 eriods \end{tabular} \\ \hline 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1 \\ 1.92593 & 1.91743 & 1.90909 & 1.90090 & 1.89286 & 1.86957 & 2 \\ 2.78326 & 2.75911 & 2.73554 & 2.71252 & 2.69005 & 2.62571 & 3 \\ 3.57710 & 3.53130 & 3.48685 & 3.44371 & 3.40183 & 3.28323 & 4 \\ 4.31213 & 4.23972 & 4.16986 & 4.10245 & 4.03735 & 3.85498 & 5 \\ & & & & & & \\ 4.99271 & 4.88965 & 4.79079 & 4.69590 & 4.60478 & 4.35216 & 6 \\ 5.62288 & 5.48592 & 5.35526 & 5.23054 & 5.11141 & 4.78448 & 7 \\ 6.20637 & 6.03295 & 5.86842 & 5.71220 & 5.56376 & 5.16042 & 8 \\ 6.74664 & 6.53482 & 6.33493 & 6.14612 & 5.96764 & 5.48732 & 9 \\ 7.24689 & 6.99525 & 6.75902 & 6.53705 & 6.32825 & 5.77158 & 10 \\ & & & & & & \\ 7.71008 & 7.41766 & 7.14457 & 6.88923 & 6.65022 & 6.01877 & 11 \\ 8.13896 & 7.80519 & 7.49506 & 7.20652 & 6.93770 & 6.23371 & 12 \\ 8.53608 & 8.16073 & 7.81369 & 7.49236 & 7.19437 & 6.42062 & 13 \\ 8.90378 & 8.48690 & 8.10336 & 7.74987 & 7.42355 & 6.58315 & 14 \\ 9.24424 & 8.78615 & 8.36669 & 7.98187 & 7.62817 & 6.72448 & 15 \\ & & & & & & \\ 9.55948 & 9.06069 & 8.60608 & 8.19087 & 7.81086 & 6.84737 & 16 \\ 9.85137 & 9.31256 & 8.82371 & 8.37916 & 7.97399 & 6.95424 & 17 \\ 10.12164 & 9.54363 & 9.02155 & 8.54879 & 8.11963 & 7.04716 & 18 \\ 10.37189 & 9.75563 & 9.20141 & 8.70162 & 8.24967 & 7.12797 & 19 \\ 10.60360 & 9.95012 & 9.36492 & 8.83929 & 8.36578 & 7.19823 & 20 \\ & & & & & & \\ 10.81815 & 10.12855 & 9.51356 & 8.96333 & 8.46944 & 7.25933 & 21 \\ 11.01680 & 10.29224 & 9.64869 & 9.07507 & 8.56200 & 7.31246 & 22 \\ 11.20074 & 10.44243 & 9.77154 & 9.17574 & 8.64465 & 7.35866 & 23 \\ 11.37106. & 10.58021 & 9.88322 & 9.26643 & 8.71843 & 7.39884 & 24 \\ 11.52876 & 10.70661 & 9.98474 & 9.34814 & 8.78432 & 7.43377 & 25 \\ \hline \end{tabular} TABLE 6.2 Present Value of 1 (Present Value of a Single Sum) PVF=1+i)n TABLE 6.3 Future Value of an Ordinary Annuity of 1 \begin{tabular}{|c|c|c|c|c|c|c|} \hline 8% & 9% & 10% & 11% & 12% & 15% & \begin{tabular}{c} (n) \\ Periods \end{tabular} \\ \hline 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1 \\ \hline 2.08000 & 2.09000 & 2.10000 & 2.11000 & 2.12000 & 2.15000 & 2 \\ \hline 3.24640 & 3.27810 & 3.31000 & 3.34210 & 3.37440 & 3.47250 & 3 \\ \hline 4.50611 & 4.57313 & 4.64100 & 4.70973 & 4.77933 & 4.99338 & 4 \\ \hline 5.86660 & 5.98471 & 6.10510 & 6.22780 & 6.35285 & 6.74238 & 5 \\ \hline 7.33592 & 7.52334 & 7.71561 & 7.91286 & 8.11519 & 8.75374 & 6 \\ \hline 8.92280 & 9.20044 & 9.48717 & 9.78327 & 10.08901 & 11.06680 & 7 \\ \hline 10.63663 & 11.02847 & 11.43589 & 11.85943 & 12.29969 & 13.72682 & 8 \\ \hline 12.48756 & 13.02104 & 13.57948 & 14.16397 & 14.77566 & 16.78584 & 9 \\ \hline 14.48656 & 15.19293 & 15.93743 & 16.72201 & 17.54874 & 20.30372 & 10 \\ \hline 16.64549 & 17.56029 & 18.53117 & 19.56143 & 20.65458 & 24.34928 & 11 \\ \hline 18.97713 & 20.14072 & 21.38428 & 22.71319 & 24.13313 & 29.00167 & 12 \\ \hline 21.49530 & 22.95339 & 24.52271 & 26.21164 & 28.02911 & 34.35192 & 13 \\ \hline 24.21492 & 26.01919 & 27.97498 & 30.09492 & 32.39260 & 40.50471 & 14 \\ \hline 27.15211 & 29.36092 & 31.77248 & 34.40536 & 37.27972 & 47.58041 & 15 \\ \hline 30.32428 & 33.00340 & 35.94973 & 39.18995 & 42.75328 & 55.71747 & 16 \\ \hline 33.75023 & 36.97371 & 40.54470 & 44.50084 & 48.88367 & 65.07509 & 17 \\ \hline 37.45024 & 41.30134 & 45.59917 & 50.39593 & 55.74972 & 75.83636 & 18 \\ \hline 41.44626 & 46.01846 & 51.15909 & 56.93949 & 63.43968 & 88.21181 & 19 \\ \hline 45.76196 & 51.16012 & 57.27500 & 64.20283 & 72.05244 & 102.44358 & 20 \\ \hline 50.42292 & 56.76453 & 64.00250 & 72.26514 & 81.69874 & 118.81012 & 21 \\ \hline 55.45676 & 62.87334 & 71.40275 & 81.21431 & 92.50258 & 137.63164 & 22 \\ \hline 60.89330 & 69.53194 & 79.54302 & 91.14788 & 104.60289 & 159.27638 & 23 \\ \hline 66.76476 & 76.78981 & 88.49733 & 102.17415 & 118.15524 & 184.16784 & 24 \\ \hline 73.10594 & 84.70090 & 98.34706 & 114.41331 & 133.33387 & 212.79302 & 25 \\ \hline \end{tabular} TABLE 6.1 Future Value of 1 (Future Value of a Single Sum) EI/E11+iin 1n11 Click here to view factor tables. What amount must be on deposit at the end of 15 years to ensure that all benefits will be paid? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581 .) The amount must be on deposit \begin{tabular}{|c|c|c|c|c|c|c|} \hline 8% & 9% & 10% & 11% & 12% & 15% & \begin{tabular}{c} (n) \\ Periods \\ \end{tabular} \\ \hline .92593 & .91743 & .90909 & .90090 & .89286 & .86957 & 1 \\ \hline .85734 & .84168 & .82645 & .81162 & .79719 & .75614 & 2 \\ \hline .79383 & .77218 & .75132 & .73119 & .71178 & .65752 & 3 \\ \hline .73503 & .70843 & .68301 & .65873 & .63552 & .57175 & 4 \\ \hline .68058 & .64993 & .62092 & .59345 & .56743 & .49718 & 5 \\ \hline .63017 & .59627 & .56447 & .53464 & .50663 & .43233 & 6 \\ \hline .58349 & .54703 & .51316 & .48166 & .45235 & .37594 & 7 \\ \hline .54027 & .50187 & .46651 & .43393 & .40388 & .32690 & 8 \\ \hline .50025 & .46043 & .42410 & .39092 & .36061 & .28426 & 9 \\ \hline .46319 & .42241 & .38554 & .35218 & .32197 & .24719 & 10 \\ \hline .42888 & .38753 & .35049 & .31728 & .28748 & .21494 & 11 \\ \hline .39711 & .35554 & .31863 & .28584 & .25668 & .18691 & 12 \\ \hline .36770 & .32618 & .28966 & .25751 & .22917 & .16253 & 13 \\ \hline .34046 & .29925 & .26333 & .23199 & .20462 & .14133 & 14 \\ \hline .31524 & .27454 & .23939 & .20900 & .18270 & .12289 & 15 \\ \hline .29189 & .25187 & .21763 & .18829 & .16312 & .10687 & 16 \\ \hline .27027 & .23107 & .19785 & .16963 & .14564 & .09293 & 17 \\ \hline .25025 & .21199 & .17986 & .15282 & .13004 & .08081 & 18 \\ \hline .23171 & .19449 & .16351 & .13768 & .11611 & .07027 & 19 \\ \hline .21455 & .17843 & .14864 & .12403 & .10367 & .06110 & 20 \\ \hline .19866 & .16370 & .13513 & .11174 & .09256 & .05313 & 21 \\ \hline .18394 & .15018 & .12285 & .10067 & .08264 & .04620 & 22 \\ \hline .17032 & .13778 & .11168 & .09069 & .07379 & .04017 & 23 \\ \hline .15770 & .12641 & .10153 & .08170 & .06588 & .03493 & 24 \\ \hline .14602 & .11597 & .09230 & .07361 & .05882 & .03038 & 25 \\ \hline \end{tabular} You have been hired as a benefit consultant by Jean Honore, the owner of Ayayai Angels. She wants to establish a retirement plan for herself and her three employees. Jean has provided the following information. The retirement plan is to be based upon annual salary for the last year before retirement and is to provide 50% of Jean's last-year annual salary and 40% of the last-year annual salary for each employee. The plan will make annual payments at the beginning of each year for 20 years from the date of retirement. Jean wishes to fund the plan by making 15 annual deposits beginning January 1, 2025. Invested funds will earn 10% compounded annually, Information about plan participants as of January 1,2025 , is as follows. Jean Honore, owner: Current annual salary of \$48,300; estimated retirement date January 1, 2050. Colin Davis, flower arranger: Current annual salary of $38,320; estimated retirement date January 1, 2055. Anita Baker, sales clerk: Current annual salary of $19,270, estimated retirement date January 1, 2045. Gavin Bryars, part-time bookkeeper: Current annual salary of $15.610; estimated retirement date January 1.2040. In the past, Jean has given herself and each employee a year-end salary increase of 4%. Jean plans to continue this policy in the future. TABLE 6.1 Future Value of 1 TABLE 6.4 Present Value of an Ordinary Annuity of 1 1(1+i)n1 TABLE 6.3 Future Value of an Ordinary Annuity of 1 FVF=OAn,i=i(1+i)n1 TABLE 6.4 Present Value of an Ordinary Annuity of 1 \begin{tabular}{llllllr} (n) \\ 8% & 9% & 10% & 11% & 12% & 15% & Periods \\ \hline .92593 & .91743 & .90909 & .90090 & .89286 & .86957 & 1 \\ 1.78326 & 1.75911 & 1.73554 & 1.71252 & 1.69005 & 1.62571 & 2 \\ 2.57710 & 2.53130 & 2.48685 & 2.44371 & 2.40183 & 2.28323 & 3 \\ 3.31213 & 3.23972 & 3.16986 & 3.10245 & 3.03735 & 2.85498 & 4 \\ 3.99271 & 3.88965 & 3.79079 & 3.69590 & 3.60478 & 3.35216 & 5 \\ & & & & & & \\ 4.62288 & 4.48592 & 4.35526 & 4.23054 & 4.11141 & 3.78448 & 6 \\ 5.20637 & 5.03295 & 4.86842 & 4.71220 & 4.56376 & 4.16042 & 7 \\ 5.74664 & 5.53482 & 5.33493 & 5.14612 & 4.96764 & 4.48732 & 8 \\ 6.24689 & 5.99525 & 5.75902 & 5.53705 & 5.32825 & 4.77158 & 9 \\ 6.71008 & 6.41766 & 6.14457 & 5.88923 & 5.65022 & 5.01877 & 10 \\ 7.13896 & 6.80519 & 6.49506 & 6.20652 & 5.93770 & 5.23371 & 11 \\ 7.53608 & 7.16073 & 6.81369 & 6.49236 & 6.19437 & 5.42062 & 12 \\ 7.90378 & 7.48690 & 7.10336 & 6.74987 & 6.42355 & 5.58315 & 13 \\ 8.24424 & 7.78615 & 7.36669 & 6.98187 & 6.62817 & 5.72448 & 14 \\ 8.55948 & 8.06069 & 7.60608 & 7.19087 & 6.81086 & 5.84737 & 15 \\ 8.85137 & 8.31256 & 7.82371 & 7.37916 & 6.97399 & 5.95424 & 16 \\ 9.12164 & 8.54363 & 8.02155 & 7.54879 & 7.11963 & 6.04716 & 17 \\ 9.37189 & 8.75563 & 8.20141 & 7.70162 & 7.24967 & 6.12797 & 18 \\ 9.60360 & 8.95012 & 8.36492 & 7.83929 & 7.36578 & 6.19823 & 19 \\ 9.81815 & 9.12855 & 8.51356 & 7.96333 & 7.46944 & 6.25933 & 20 \\ 10.01680 & 9.29224 & 8.64869 & 8.07507 & 7.56200 & 6.31246 & 21 \\ 10.20074 & 9.44243 & 8.77154 & 8.17574 & 7.64465 & 6.35866 & 22 \\ 10.37106 & 9.58021 & 8.88322 & 8.26643 & 7.71843 & 6.39884 & 23 \\ 10.52876 & 9.70661 & 8.98474 & 8.34814 & 7.78432 & 6.43377 & 24 \\ 10.67478 & 9.82258 & 9.07704 & 8.42174 & 7.84314 & 6.46415 & 25 \end{tabular} \begin{tabular}{ccccccc} 8% & 9% & 10% & 11% & 12% & 15% & \begin{tabular}{c} (n) \\ 8 eriods \end{tabular} \\ \hline 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1 \\ 1.92593 & 1.91743 & 1.90909 & 1.90090 & 1.89286 & 1.86957 & 2 \\ 2.78326 & 2.75911 & 2.73554 & 2.71252 & 2.69005 & 2.62571 & 3 \\ 3.57710 & 3.53130 & 3.48685 & 3.44371 & 3.40183 & 3.28323 & 4 \\ 4.31213 & 4.23972 & 4.16986 & 4.10245 & 4.03735 & 3.85498 & 5 \\ & & & & & & \\ 4.99271 & 4.88965 & 4.79079 & 4.69590 & 4.60478 & 4.35216 & 6 \\ 5.62288 & 5.48592 & 5.35526 & 5.23054 & 5.11141 & 4.78448 & 7 \\ 6.20637 & 6.03295 & 5.86842 & 5.71220 & 5.56376 & 5.16042 & 8 \\ 6.74664 & 6.53482 & 6.33493 & 6.14612 & 5.96764 & 5.48732 & 9 \\ 7.24689 & 6.99525 & 6.75902 & 6.53705 & 6.32825 & 5.77158 & 10 \\ & & & & & & \\ 7.71008 & 7.41766 & 7.14457 & 6.88923 & 6.65022 & 6.01877 & 11 \\ 8.13896 & 7.80519 & 7.49506 & 7.20652 & 6.93770 & 6.23371 & 12 \\ 8.53608 & 8.16073 & 7.81369 & 7.49236 & 7.19437 & 6.42062 & 13 \\ 8.90378 & 8.48690 & 8.10336 & 7.74987 & 7.42355 & 6.58315 & 14 \\ 9.24424 & 8.78615 & 8.36669 & 7.98187 & 7.62817 & 6.72448 & 15 \\ & & & & & & \\ 9.55948 & 9.06069 & 8.60608 & 8.19087 & 7.81086 & 6.84737 & 16 \\ 9.85137 & 9.31256 & 8.82371 & 8.37916 & 7.97399 & 6.95424 & 17 \\ 10.12164 & 9.54363 & 9.02155 & 8.54879 & 8.11963 & 7.04716 & 18 \\ 10.37189 & 9.75563 & 9.20141 & 8.70162 & 8.24967 & 7.12797 & 19 \\ 10.60360 & 9.95012 & 9.36492 & 8.83929 & 8.36578 & 7.19823 & 20 \\ & & & & & & \\ 10.81815 & 10.12855 & 9.51356 & 8.96333 & 8.46944 & 7.25933 & 21 \\ 11.01680 & 10.29224 & 9.64869 & 9.07507 & 8.56200 & 7.31246 & 22 \\ 11.20074 & 10.44243 & 9.77154 & 9.17574 & 8.64465 & 7.35866 & 23 \\ 11.37106. & 10.58021 & 9.88322 & 9.26643 & 8.71843 & 7.39884 & 24 \\ 11.52876 & 10.70661 & 9.98474 & 9.34814 & 8.78432 & 7.43377 & 25 \\ \hline \end{tabular}