Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

temp_df = pd.read_csv(fhttps://query1.finance.yahoo.com/v8/finance/chart/symbol}?' f'period1={start_date}&period2={end_date}&interval=1d&events=history') risk_free_df = pd.read_csv(f'https://finance.yahoo.com/quote/%5EIRX/history?p=%5EIRX' f'period1={start_date}&period2={end_date}&interval=1d&events=history') have problem please import yfianance as yf and use yahoo finance package to fix the problem This

temp_df = pd.read_csv(f"https://query1.finance.yahoo.com/v8/finance/chart/symbol}?' f'period1={start_date}&period2={end_date}&interval=1d&events=history')
risk_free_df = pd.read_csv(f'https://finance.yahoo.com/quote/%5EIRX/history?p=%5EIRX' f'period1={start_date}&period2={end_date}&interval=1d&events=history')
have problem please import yfianance as yf and use yahoo finance package to fix the problem This is the orginal programming mport pandas as pd import numpy as np import matplotlib.pyplot as plt # Step 1: Download daily prices for the five stocks symbols = ['AAPL', 'AMZN', 'GOOG', 'MSFT', 'TSLA'] start_date = '2010-01-01' end_date = '2022-12-31' prices_df = pd.DataFrame() for symbol in symbols: temp_df = pd.read_csv(f"https://query1.finance.yahoo.com/v8/finance/chart/symbol}?' f'period1={start_date}&period2={end_date}&interval=1d&events=history') temp_df = temp_df[['Date', 'Close']].rename(columns={'Close': symbol}).set_index('Date') prices_df = pd.concat([prices_df, temp_df], axis=1, sort=True) # Step 2: Calculate daily returns of the stocks returns_df = np.log(prices_df) - np.log(prices_df.shift(1)) returns_df.dropna(inplace=True) # Step 3: Download risk-free rates risk_free_df = pd.read_csv(f'https://finance.yahoo.com/quote/%5EIRX/history?p=%5EIRX' f'period1={start_date}&period2={end_date}&interval=1d&events=history') risk_free_df['Date'] = pd.to_datetime(risk_free_df['Date']) risk_free_df.set_index('Date', inplace=True) risk_free_df = risk_free_df.resample('D').last().ffill().pct_change() risk_free_df = risk_free_df * 252 # Annualize risk-free rates risk_free_df.dropna(inplace=True) # Step 4: Compute excess returns excess_returns_df = returns_df.sub(risk_free_df['^IRX'], axis=0) # Step 5: Allocate portfolio based on 200-day moving average moving_averages_df = prices_df.rolling(window=200).mean().shift(1) portfolio_weights_df = np.where(prices_df > moving_averages_df, 0.2, 0) portfolio_weights_df['Cash'] = 1 - portfolio_weights_df.sum(axis=1) portfolio_returns_df = (excess_returns_df * portfolio_weights_df).sum(axis=1) # Step 6: Compute mean and standard deviation of the portfolio portfolio_mean = portfolio_returns_df.mean() portfolio_std = portfolio_returns_df.std() print(f"Mean of the portfolio: {portfolio_mean:.6f}") print(f"Standard deviation of the portfolio: {portfolio_std:.6f}") # Step 7: Compute mean and standard deviation of equally-weighted portfolio equal_weights_df = pd.DataFrame(np.ones((len(prices_df), len(symbols))) / len(symbols), index=prices_df.index, columns=symbols) equal_returns_df = (excess_returns_df * equal_weights_df).sum(axis=1) equal_mean = equal_returns_df.mean() equal_std = equal_returns_df.std() print(f" Mean of equally-weighted portfolio: {equal_mean:.6f}") print(f"Standard deviation of equally-weighted portfolio: {equal_std:.6f}") # Step 8: Plot cumulative performance of both strategies portfolio_cumulative_returns = (1 + portfolio_returns_df).cumprod() equal_cumulative_returns = (1 + equal_returns_df).cumprod() plt.plot(portfolio_cumulative_returns, label='Portfolio') plt.plot(equal_cumulative_returns, label='Equal weights') plt.legend() plt.title('Cumulative Returns of Portfolio Strategies') plt.xlabel('Date') plt.ylabel('Cumulative Returns') plt.show() portfolio_cumulative_returns = (1 + portfolio_returns_df).cumprod() equal_cumulative_returns = (1 + equal_returns_df).cumprod() plt.plot(portfolio_cumulative_returns, label='Portfolio') plt.plot(equal_cumulative_returns, label='Equal weights') plt.legend() plt.title('Cumulative Returns of Portfolio Strategies') plt.xlabel('Date') plt.ylabel('Cumulative Returns') plt.show() 

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_step_2

Step: 3

blur-text-image_step3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

More Books

Students also viewed these Databases questions

Question

What benefits are we looking to gain by using external providers?

Answered: 1 week ago

Question

What are the important considerations in target audience selection?

Answered: 1 week ago